Ohio's State Tests

PRACTICE TEST ANSWER KEY & SCORING GUIDELINES

GEOMETRY
Table of Contents

Questions 1 - 30: Content Summary and Answer Key .. iii

Question 1: Question and Scoring Guidelines .. 1
Question 1: Sample Response .. 3

Question 2: Question and Scoring Guidelines .. 5
Question 2: Sample Responses ... 9

Question 3: Question and Scoring Guidelines .. 15
Question 3: Sample Responses ... 19

Question 4: Question and Scoring Guidelines .. 25
Question 4: Sample Responses ... 29

Question 5: Question and Scoring Guidelines .. 35
Question 5: Sample Responses ... 39

Question 6: Question and Scoring Guidelines .. 43
Question 6: Sample Responses ... 47

Question 7: Question and Scoring Guidelines .. 53
Question 7: Sample Responses ... 57

Question 8: Question and Scoring Guidelines .. 63
Question 8: Sample Response .. 66

Question 9: Question and Scoring Guidelines .. 67
Question 9: Sample Response .. 70

Question 10: Question and Scoring Guidelines .. 71
Question 10: Sample Response ... 74

Question 11: Question and Scoring Guidelines .. 75
Question 11: Sample Responses .. 79

Question 12: Question and Scoring Guidelines .. 83
Question 12: Sample Responses .. 87

Question 13: Question and Scoring Guidelines .. 93
Question 13: Sample Response ... 95

Question 14: Question and Scoring Guidelines .. 97
Question 14: Sample Responses ... 101

Question 15: Question and Scoring Guidelines .. 109
Question 15: Sample Responses .. 113
Geometry Practice Test Content Summary and Answer Key

<table>
<thead>
<tr>
<th>Question No.</th>
<th>Item Type</th>
<th>Content Cluster</th>
<th>Content Standard</th>
<th>Answer Key</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Multiple Choice</td>
<td>Understand and apply theorems about circles.</td>
<td>Prove that all circles are similar using transformational arguments. (G.C.1)</td>
<td>C</td>
<td>1 point</td>
</tr>
<tr>
<td>2</td>
<td>Graphic Response</td>
<td>Experiment with transformations in the plane.</td>
<td>Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using items such as graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another. (G.C.O.5)</td>
<td>---</td>
<td>1 point</td>
</tr>
<tr>
<td>3</td>
<td>Gap Match Item</td>
<td>Use coordinates to prove simple geometric theorems algebraically and to verify specific geometric statements.</td>
<td>Use coordinates to prove simple geometric theorems algebraically and to verify geometric relationships algebraically, including properties of special triangles, quadrilaterals, and circles. For example, determine if a figure defined by four given points in the coordinate plane is a rectangle; determine if a specific point lies on a given circle. (G.GPE.4)</td>
<td>---</td>
<td>1 point</td>
</tr>
<tr>
<td>4</td>
<td>Graphic Response</td>
<td>Define trigonometric ratios, and solve problems involving right triangles.</td>
<td>Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles. (G.SRT.6)</td>
<td>---</td>
<td>1 point</td>
</tr>
<tr>
<td>5</td>
<td>Multi-Select Item</td>
<td>Understand independence and conditional probability, and use them to interpret data.</td>
<td>Understand the conditional probability of A given B as P(A and B)/P(B), and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B. (S.CP.3)★</td>
<td>A, D, F</td>
<td>1 point</td>
</tr>
</tbody>
</table>

(★) indicates that modeling should be incorporated into the standard.
<table>
<thead>
<tr>
<th>Question No.</th>
<th>Item Type</th>
<th>Content Cluster</th>
<th>Content Standard</th>
<th>Answer Key</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Equation Item</td>
<td>Understand and apply theorems about circles.</td>
<td>Construct the inscribed and circumscribed circles of a triangle; prove and apply the property that opposite angles are supplementary for a quadrilateral inscribed in a circle. (G.C.3)</td>
<td>---</td>
<td>1 point</td>
</tr>
<tr>
<td>7</td>
<td>Gap Match Item</td>
<td>Prove geometric theorems both formally and informally using a variety of methods.</td>
<td>Prove and apply theorems about triangles. Theorems include but are not restricted to the following: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point. (G.CO.10)</td>
<td>---</td>
<td>1 point</td>
</tr>
<tr>
<td>8</td>
<td>Multiple Choice</td>
<td>Prove geometric theorems both formally and informally using a variety of methods.</td>
<td>Prove and apply theorems about parallelograms. Theorems include but are not restricted to the following: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals. (G.CO.11)</td>
<td>B</td>
<td>1 point</td>
</tr>
<tr>
<td>Question No.</td>
<td>Item Type</td>
<td>Content Cluster</td>
<td>Content Standard</td>
<td>Answer Key</td>
<td>Points</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------</td>
<td>--</td>
<td>---</td>
<td>------------</td>
<td>--------</td>
</tr>
<tr>
<td>9</td>
<td>Multiple Choice</td>
<td>Make geometric constructions.</td>
<td>Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line. (G.CO.12)</td>
<td>D</td>
<td>1 point</td>
</tr>
<tr>
<td>10</td>
<td>Multiple Choice</td>
<td>Experiment with transformations in the plane.</td>
<td>Identify the symmetries of a figure, which are the rotations and reflections that carry it onto itself. (G.CO.3)</td>
<td>D</td>
<td>1 point</td>
</tr>
<tr>
<td>11</td>
<td>Multi-Select Item</td>
<td>Understand congruence in terms of rigid motions.</td>
<td>Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent. (G.CO.6)</td>
<td>C, D</td>
<td>1 point</td>
</tr>
<tr>
<td>12</td>
<td>Equation Item</td>
<td>Explain volume formulas, and use them to solve problems.</td>
<td>Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems. (G.GMD.3)</td>
<td>---</td>
<td>1 point</td>
</tr>
<tr>
<td>13</td>
<td>Multiple Choice</td>
<td>Visualize relationships between two-dimensional and three-dimensional objects.</td>
<td>Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects. (G.GMD.4)</td>
<td>B</td>
<td>1 point</td>
</tr>
</tbody>
</table>

(★) indicates that modeling should be incorporated into the standard.
<table>
<thead>
<tr>
<th>Question No.</th>
<th>Type</th>
<th>Content Cluster</th>
<th>Content Standard</th>
<th>Answer Key</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Equation Item</td>
<td>Translate between the geometric description and the equation for a conic section.</td>
<td>Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation. (G.GPE.1)</td>
<td>---</td>
<td>1 point</td>
</tr>
<tr>
<td>15</td>
<td>Equation Item</td>
<td>Use coordinates to prove simple geometric theorems algebraically and to verify specific geometric statements.</td>
<td>Justify the slope criteria for parallel and perpendicular lines, and use them to solve geometric problems, e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point. (G.GPE.5)</td>
<td>---</td>
<td>1 point</td>
</tr>
<tr>
<td>16</td>
<td>Equation Item</td>
<td>Use coordinates to prove simple geometric theorems algebraically and to verify specific geometric statements.</td>
<td>Find the point on a directed line segment between two given points that partitions the segment in a given ratio. (G.GPE.6)</td>
<td>---</td>
<td>1 point</td>
</tr>
<tr>
<td>17</td>
<td>Equation Item</td>
<td>Use coordinates to prove simple geometric theorems algebraically and to verify specific geometric statements.</td>
<td>Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. (G.GPE.7)</td>
<td>---</td>
<td>1 point</td>
</tr>
<tr>
<td>18</td>
<td>Equation Item</td>
<td>Apply geometric concepts in modeling situations.</td>
<td>Apply geometric methods to solve design problems, e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios. (G.MG.3)</td>
<td>---</td>
<td>2 points</td>
</tr>
</tbody>
</table>

(★) indicates that modeling should be incorporated into the standard.
Geometry Practice Test

Content Summary and Answer Key

<table>
<thead>
<tr>
<th>Question No.</th>
<th>Item Type</th>
<th>Content Cluster</th>
<th>Content Standard</th>
<th>Answer Key</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Multiple Choice</td>
<td>Understand similarity in terms of similarity transformations.</td>
<td>Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides. (G.SRT.2)</td>
<td>A</td>
<td>1 point</td>
</tr>
<tr>
<td>20</td>
<td>Equation Item</td>
<td>Understand similarity in terms of similarity transformations.</td>
<td>Verify experimentally the properties of dilations given by a center and a scale factor: b. The dilation of a line segment is longer or shorter in the ratio given by the scale factor. (G.SRT.1b)</td>
<td>---</td>
<td>1 point</td>
</tr>
<tr>
<td>21</td>
<td>Gap Match Item</td>
<td>Prove and apply theorems both formally and informally involving similarity using a variety of methods.</td>
<td>Prove and apply theorems about triangles. Theorems include but are not restricted to the following: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity. (G.SRT.4)</td>
<td>---</td>
<td>1 point</td>
</tr>
<tr>
<td>22</td>
<td>Equation Item</td>
<td>Define trigonometric ratios, and solve problems involving right triangles.</td>
<td>Solve problems involving right triangles. (G.SRT.8)★</td>
<td>---</td>
<td>1 point</td>
</tr>
<tr>
<td>23</td>
<td>Equation Item</td>
<td>Define trigonometric ratios, and solve problems involving right triangles.</td>
<td>Explain and use the relationship between the sine and cosine of complementary angles. (G.SRT.7)</td>
<td>---</td>
<td>1 point</td>
</tr>
</tbody>
</table>

(★) indicates that modeling should be incorporated into the standard.
<table>
<thead>
<tr>
<th>Question No.</th>
<th>Item Type</th>
<th>Content Cluster</th>
<th>Content Standard</th>
<th>Answer Key</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Equation Item</td>
<td>Understand independence and conditional probability, and use them to interpret data.</td>
<td>Understand that two events A and B are independent if and only if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent. (S.CP.2)★</td>
<td>---</td>
<td>1 point</td>
</tr>
<tr>
<td>25</td>
<td>Table Item</td>
<td>Understand independence and conditional probability, and use them to interpret data.</td>
<td>Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your school on their favorite subject among math, science, and English. Estimate the probability that a randomly selected student from your school will favor science given that the student is in tenth grade. Do the same for other subjects and compare the results. (S.CP.4)★</td>
<td>---</td>
<td>1 point</td>
</tr>
</tbody>
</table>

(★) indicates that modeling should be incorporated into the standard.
Geometry Practice Test

Content Summary and Answer Key

<table>
<thead>
<tr>
<th>Question No.</th>
<th>Item Type</th>
<th>Content Cluster</th>
<th>Content Standard</th>
<th>Answer Key</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Multiple Choice</td>
<td>Understand independence and conditional probability, and use them to interpret data.</td>
<td>Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer. (S.CP.5)★</td>
<td>D</td>
<td>1 point</td>
</tr>
<tr>
<td>27</td>
<td>Equation Item</td>
<td>Use the rules of probability to compute probabilities of compound events in a uniform probability model.</td>
<td>Apply the Addition Rule, (P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)), and interpret the answer in terms of the model. (S.CP.7)★</td>
<td>---</td>
<td>1 point</td>
</tr>
<tr>
<td>28</td>
<td>Equation Item</td>
<td>Experiment with transformations in the plane.</td>
<td>Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not, e.g., translation versus horizontal stretch. (G.CO.2)</td>
<td>---</td>
<td>1 point</td>
</tr>
</tbody>
</table>

(★) indicates that modeling should be incorporated into the standard.
<table>
<thead>
<tr>
<th>Question No.</th>
<th>Item Type</th>
<th>Content Cluster</th>
<th>Content Standard</th>
<th>Answer Key</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Gap Match Item</td>
<td>Prove geometric theorems both formally and informally using a variety of methods.</td>
<td>Prove and apply theorems about triangles. Theorems include but are not restricted to the following: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point. (G.CO.10)</td>
<td>---</td>
<td>1 point</td>
</tr>
<tr>
<td>30</td>
<td>Editing Task Choice Item</td>
<td>Understand and apply theorems about circles.</td>
<td>Prove that all circles are similar using transformational arguments. (G.C.1)</td>
<td>---</td>
<td>1 point</td>
</tr>
</tbody>
</table>
Geometry Practice Test

Question 1

Question and Scoring Guidelines
Question 1

Circle J is located in the first quadrant with center (a, b) and radius s. Felipe transforms Circle J to prove that it is similar to any circle centered at the origin with radius t.

Which sequence of transformations did Felipe use?

A. Translate Circle J by $(x + a, y + b)$ and dilate by a factor of $\frac{t}{s}$.

B. Translate Circle J by $(x + a, y + b)$ and dilate by a factor of $\frac{s}{t}$.

C. Translate Circle J by $(x-a, y-b)$ and dilate by a factor of $\frac{t}{s}$.

D. Translate Circle J by $(x-a, y-b)$ and dilate by a factor of $\frac{s}{t}$.

Points Possible: 1

Content Cluster: Understand and apply theorems about circles.

Content Standard: Prove that all circles are similar using transformational arguments. (G.C.1)

Scoring Guidelines

Rationale for Option A: This is incorrect. The student may have noticed that the Circle J is located to the right of Circle O, and may have thought that he or she needed to translate the center of Circle O to the right a units and up b units, and to use addition to represent this translation.

Rationale for Option B: This is incorrect. The student may have noticed that Circle J is located to the right of Circle O, and may have thought that he or she needed to translate the center of Circle O to the right a units and up b units and to use addition to represent this translation. The student may have also used the inverse of the correct scale factor.
Rationale for Option C: **Key** – The student recognized that translating Circle J with the center at \((a, b)\) to the origin \((0, 0)\) involves a subtraction of \(a\) units from the \(x\)-coordinate and \(b\) units from the \(y\)-coordinate of the center of Circle J. Dilation by a scale factor \(\frac{t}{s}\) (radius of the image/radius of the pre-image) overlays Circle J on any other circle centered at the origin with radius \(t\), proving a similarity.

Rationale for Option D: This is incorrect. The student recognized that translating the Circle J with the center at \((a, b)\) to the origin \((0, 0)\) involves a subtraction of \(a\) units from the \(x\)-coordinate and \(b\) units from the \(y\)-coordinate of the center of Circle J, but he or she used the inverse of the correct scale factor.

Sample Response: 1 point
Geometry Practice Test

Question 2

Question and Scoring Guidelines
Question 2

Quadrilateral BCDE is shown on the coordinate grid.

Keisha reflects the figure across the line $y = x$ to create $B'C'D'E'$.

Use the Connect Line tool to draw quadrilateral $B'C'D'E'$.

Points Possible: 1

Content Cluster: Experiment with transformations in the plane.

Content Standard: Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using items such as graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another. (G.C.O.5)
Scoring Guidelines

Exemplar Response

![Exemplar Graph](image)

Other Correct Responses

- Additional lines and points are ignored.

For this item, a full-credit response includes:

- The correct quadrilateral (1 point).
Geometry Practice Test

Question 2

Sample Responses
Sample Response: 1 point

Quadrilateral BCDE is shown on the coordinate grid.

Keisha reflects the figure across the line \(y = x \) to create \(B'C'D'E' \).

Use the Connect Line tool to draw quadrilateral \(B'C'D'E' \).

Notes on Scoring

This response earns full credit (1 point) because it shows a correct quadrilateral \(B'C'D'E' \) with the vertices \(B'(-3, 3) \), \(C'(-4, 9) \), \(D'(-10, 10) \) and \(E'(-5, 2) \).

A reflection over a line \(y = x \) is a transformation in which each point of the original quadrilateral has an image that is the same distance from the line of reflection as the original point on the opposite side of the line. The reflection of the point \((x, y) \) across the line \(y = x \) is the point \((y, x) \).
Sample Response: 1 point

Quadrilateral BCDE is shown on the coordinate grid.

Keisha reflects the figure across the line \(y = x \) to create B'C'D'E'.

Use the Connect Line tool to draw quadrilateral B'C'D'E'.

Notes on Scoring

This response earns full credit (1 point) because it shows a correct quadrilateral B'C'D'E' with the vertices B'(-3, 3), C'(-4, 9), D'(-10, 10) and E'(-5, 2) and a correct line segment belonging to the line of reflection \(y = x \).

A reflection over a line \(y = x \) is a transformation in which each point of the original quadrilateral has an image that is the same distance from the line of reflection as the original point on the opposite side of the line. The reflection of the point \((x, y)\) across the line \(y = x \) is the point \((y, x)\).
Sample Response: 0 points

Quadrilateral BCDE is shown on the coordinate grid.

Keisha reflects the figure across the line $y = x$ to create B'C'D'E'.

Use the Connect Line tool to draw quadrilateral B'C'D'E'.

Notes on Scoring

This response earns no credit (0 points) because it shows an incorrect quadrilateral due to an extra reflection. The quadrilateral BCDE is first reflected across the line $y = x$ and then across the line $y = -x$.
Sample Response: 0 points

Quadrilateral BCDE is shown on the coordinate grid.
Keisha reflects the figure across the line $y = x$ to create $B'C'D'E'$.
Use the Connect Line tool to draw quadrilateral $B'C'D'E'$.

Notes on Scoring
This response earns no credit (0 points) because it shows an incorrect quadrilateral due to the wrong line of reflection being used. The quadrilateral BCDE is reflected across the line $y = -x$ instead of $y = x$.
Geometry Practice Test

Question 3

Question and Scoring Guidelines
Question 3

Three vertices of parallelogram PQRS are shown:

Q (8, 5), R (5, 1), S (2, 5)

Place statements and reasons in the table to complete the proof that shows that parallelogram PQRS is a rhombus.

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR = QR</td>
<td>Pythagorean Theorem</td>
</tr>
<tr>
<td>SR ≠ QR</td>
<td>Substitution</td>
</tr>
<tr>
<td>PS ≡ QR</td>
<td>Definition of congruent line segments</td>
</tr>
<tr>
<td>Parallelogram PQRS is a rhombus.</td>
<td>Definition of a rhombus</td>
</tr>
</tbody>
</table>

SR = 5	SR = \sqrt{7}	∠PSR = 90°
PQ = 5	PQ = \sqrt{7}	5R ≡ PQ
QR = 5	QR = \sqrt{7}	Pythagorean Theorem
Definition of perpendicular lines	Property of a parallelogram	Definition of parallel lines

Points Possible: 1

Content Cluster: Use coordinates to prove simple geometric theorems algebraically and to verify specific geometric statements.

Content Standard: Use coordinates to prove simple geometric theorems algebraically and to verify geometric relationships algebraically, including properties of special triangles, quadrilaterals, and circles. For example, determine if a figure defined by four given points in the coordinate plane is a rectangle; determine if a specific point lies on a given circle. (G.GPE.4)
Scoring Guidelines

Exemplar Response

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR = 5</td>
<td>Pythagorean Theorem</td>
</tr>
<tr>
<td>QR = 5</td>
<td>Pythagorean Theorem</td>
</tr>
<tr>
<td>SR = QR</td>
<td>Substitution</td>
</tr>
<tr>
<td>SR ≠ QR</td>
<td>Definition of congruent line segments</td>
</tr>
<tr>
<td>PS = QR</td>
<td>Property of a parallelogram</td>
</tr>
<tr>
<td>SR ≠ PQ</td>
<td>Property of a parallelogram</td>
</tr>
<tr>
<td>Parallelogram PQRS is a rhombus.</td>
<td>Definition of a rhombus</td>
</tr>
</tbody>
</table>

Other Correct Responses

- The first two cells in the Statements column can be switched.

For this item, a full-credit response includes:

- A correctly completed table (1 point).
Geometry Practice Test

Question 3

Sample Responses
Sample Response: 1 point

Three vertices of parallelogram PQRS are shown:

Q (8, 5), R (5, 1), S (2, 5)

Place statements and reasons in the table to complete the proof that shows that parallelogram PQRS is a rhombus.

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR = 5</td>
<td>Pythagorean Theorem</td>
</tr>
<tr>
<td>QR = 5</td>
<td>Pythagorean Theorem</td>
</tr>
<tr>
<td>SR = QR</td>
<td>Substitution</td>
</tr>
<tr>
<td>SR = QR</td>
<td>Definition of congruent line segments</td>
</tr>
<tr>
<td>PS = QR</td>
<td>Property of a parallelogram</td>
</tr>
<tr>
<td>SR = PQ</td>
<td>Property of a parallelogram</td>
</tr>
<tr>
<td>Parallelogram PQRS is a rhombus.</td>
<td>Definition of a rhombus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR = √7</td>
<td>∠PSR = 90°</td>
</tr>
<tr>
<td>PQ = 5</td>
<td>PQ = √7</td>
</tr>
<tr>
<td>QR = 5</td>
<td>Definition of perpendicular lines</td>
</tr>
<tr>
<td></td>
<td>Definition of parallel lines</td>
</tr>
</tbody>
</table>

Notes on Scoring

This response earns full credit (1 point) because it shows a complete proof of a geometric theorem using coordinates.

A parallelogram is a rhombus if all sides are congruent. In this situation, the Pythagorean Theorem is used to calculate the side lengths of SR and QR to show that SR and QR are both 5 units. Since both pairs of opposite sides of a parallelogram are congruent (property of a parallelogram) and a pair of adjacent sides is congruent, then all four sides of the parallelogram PQRS are congruent. Thus, PQRS is a rhombus.
Sample Response: 1 point

Three vertices of parallelogram PQRS are shown:
Q (8, 5), R (5, 1), S (2, 5)

Place statements and reasons in the table to complete the proof that shows that parallelogram PQRS is a rhombus.

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>QR = 5</td>
<td>Pythagorean Theorem</td>
</tr>
<tr>
<td>SR = 5</td>
<td>Pythagorean Theorem</td>
</tr>
<tr>
<td>SR ≈ QR</td>
<td>Substitution</td>
</tr>
<tr>
<td>PS ≈ QR</td>
<td>Definition of congruent line segments</td>
</tr>
<tr>
<td>SR ≈ PQ</td>
<td>Property of a parallelogram</td>
</tr>
<tr>
<td>Parallelogram PQRS is a rhombus.</td>
<td>Definition of a rhombus</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SR = √7</td>
<td>∠PSR = 90°</td>
</tr>
<tr>
<td>PQ = 5</td>
<td>PQ = √7</td>
</tr>
<tr>
<td>QR = √7</td>
<td></td>
</tr>
</tbody>
</table>

Definition of perpendicular lines | Definition of parallel lines

Notes on Scoring

This response earns full credit (1 point) because it shows a complete proof of a geometric theorem using coordinates.

A parallelogram is a rhombus if all sides are congruent. In this situation, the Pythagorean Theorem is used to calculate the side lengths of SR and QR to show that SR and QR are both 5 units. Since both pairs of opposite sides of a parallelogram are congruent (property of a parallelogram) and a pair of adjacent sides is congruent, then all four sides of the parallelogram PQRS are congruent. Thus, PQRS is a rhombus.
Sample Response: 0 points

Three vertices of parallelogram PQRS are shown:

Q (8, 5), R (5, 1), S (2, 5)

Place statements and reasons in the table to complete the proof that shows that parallelogram PQRS is a rhombus.

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>QR = 5</td>
<td>Pythagorean Theorem</td>
</tr>
<tr>
<td>SR = 5</td>
<td></td>
</tr>
<tr>
<td>SR = QR</td>
<td>Substitution</td>
</tr>
<tr>
<td>SR ≠ QR</td>
<td>Definition of congruent line segments</td>
</tr>
<tr>
<td>PR = QR</td>
<td>Property of a parallelogram</td>
</tr>
<tr>
<td>SR = PQ</td>
<td></td>
</tr>
<tr>
<td>Parallelogram PQRS is a rhombus.</td>
<td>Definition of a rhombus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>PQ = 5</td>
<td>Property of a parallelogram</td>
</tr>
<tr>
<td>SR = \sqrt{7}</td>
<td>\angle PSR = 90^\circ</td>
</tr>
<tr>
<td>QR = \sqrt{7}</td>
<td></td>
</tr>
<tr>
<td>Definition of perpendicular lines</td>
<td>Pythagorean Theorem</td>
</tr>
<tr>
<td></td>
<td>Definition of parallel lines</td>
</tr>
</tbody>
</table>

Notes on Scoring

This response earns no credit (0 points) because it shows an incomplete proof of a geometric theorem using coordinates. The response is missing two reasons.
Sample Response: 0 points

Three vertices of parallelogram PQRS are shown:

Q (8, 5), R (5, 1), S (2, 5)

Place statements and reasons in the table to complete the proof that shows that parallelogram PQRS is a rhombus.

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>QR = 5</td>
<td>Pythagorean Theorem</td>
</tr>
<tr>
<td>SR = PQ</td>
<td>Property of a parallelogram</td>
</tr>
<tr>
<td>SR = QR</td>
<td>Substitution</td>
</tr>
<tr>
<td>SR = QR</td>
<td>Definition of congruent line segments</td>
</tr>
<tr>
<td>PS = QR</td>
<td>Property of a parallelogram</td>
</tr>
<tr>
<td>SR = 5</td>
<td>Pythagorean Theorem</td>
</tr>
<tr>
<td>Parallelogram PQRS is a rhombus.</td>
<td>Definition of a rhombus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR = $\sqrt{7}$</td>
<td>$\angle PSR = 90^\circ$</td>
</tr>
<tr>
<td>PQ = 5</td>
<td>$PQ = \sqrt{7}$</td>
</tr>
<tr>
<td>QR = $\sqrt{7}$</td>
<td>Definition of parallel lines</td>
</tr>
</tbody>
</table>

Notes on Scoring

This response earns no credit (0 points) because it shows an incorrect proof (incorrect order of statements along with incorrect justifications) of a geometric theorem using coordinates.
Geometry Practice Test

Question 4

Question and Scoring Guidelines
Question 4

Felicia wants to draw $\triangle PQR$ such that the conditions shown are true.
- The area of $\triangle PQR$ is not 6 square units.
- $\cos P = 0.6$

Use the Connect Line tool to draw one possible $\triangle PQR$. Then drag letters to the vertices to label the triangle.

Points Possible: 1

Content Cluster: Define trigonometric ratios, and solve problems involving right triangles.

Content Standard: Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles. (G.SRT.6)
Scoring Guidelines

Exemplar Response

Other Correct Responses

- Any right triangle for which the relationship

\[
\frac{\text{the length of the leg adjacent to angle } P}{\text{hypotenuse}} = 0.6
\]

holds and whose area is not 6 square units.

For this item, a full-credit response includes:

- A correct triangle (1 point).
Geometry Practice Test

Question 4

Sample Responses
Sample Response: 1 point

Felicia wants to draw $\triangle PQR$ such that the conditions shown are true.
- The area of $\triangle PQR$ is not 6 square units.
- $\cos P = 0.6$

Use the Connect Line tool to draw one possible $\triangle PQR$. Then drag letters to the vertices to label the triangle.

Notes on Scoring

This response earns full credit (1 point) because it shows a correct triangle with $\cos P = \frac{6}{10}$ or $\frac{3}{5}$ and the area $A = \frac{1}{2} \cdot 8 \cdot 6 = 24$ sq units.

This item asks students to draw and label a right triangle PQR that has an area that is not 6 sq units and where $\cos P = 0.6$. In right triangles, the cosine of an angle equals the length of the adjacent leg over the length of the hypotenuse. Since $\cos P = 0.6$, the length of the adjacent leg/length of the hypotenuse is 0.6 or $\frac{6}{10}$. From here, the length of an adjacent leg can be 6 units, and the length of the hypotenuse is 10 units. Therefore, by the Pythagorean Theorem, the length of the leg that is opposite the angle P is 8 units. Drawing any right triangle with the relationship “the length of the leg adjacent to vertex P over the length of the hypotenuse equals 0.6”, and with the leg adjacent to P not 3 units long, yields a correct response. A right triangle PQR with side lengths 3, 4 and 5 units long has $\cos P = 0.6$ and an area of 6 sq units ($A = \frac{1}{2} \cdot b \cdot h$), which contradicts the given condition and, therefore, is not a correct response.
Sample Response: 1 point

Felicia wants to draw ∆PQR such that the conditions shown are true.

- The area of ∆PQR is not 6 square units.
- \(\cos P = 0.6 \)

Use the Connect Line tool to draw one possible ∆PQR. Then drag letters to the vertices to label the triangle.

Notes on Scoring

This response earns full credit (1 point) because it shows a correct triangle with \(\cos P = \frac{9}{15} \) or \(\frac{3}{5} \) and the area \(A = \frac{1}{2} \cdot 12 \cdot 9 = 54 \) sq units.

This item asks students to draw and label a right triangle PQR that has an area that is not 6 sq units and where \(\cos P = 0.6 \). In right triangles, the cosine of an angle equals to the length of the adjacent leg over the length of the hypotenuse. Since \(\cos P = 0.6 \), the length of the adjacent leg/length of the hypotenuse is 0.6 or \(\frac{3}{5} \) or \(\frac{9}{15} \). From here, the length of an adjacent leg can be 9 units, and the length of the hypotenuse is 15 units. Therefore, by the Pythagorean Theorem, the length of the leg that is opposite to the angle P is 12 units. Drawing any right triangle with the relationship “the length of the leg adjacent to vertex P over the length of the hypotenuse equals 0.6”, and with the leg adjacent to P not 3 units long, yields a correct response. A right triangle PQR with side lengths 3, 4 and 5 units has a \(\cos P = 0.6 \) and an area of 6 sq units (\(A = \frac{1}{2} \cdot bh \)), which contradicts the given condition and, therefore, is not a correct response.
Notes on Scoring

This response earns no credit (0 points) because it shows an incorrect triangle with \(\cos P = \frac{8}{10} \) or \(\frac{4}{5} \), instead of \(\frac{6}{10} \).
Felicia wants to draw a PQR such that the conditions shown are true.
- The area of ΔPQR is not 5 square units.
- \(\cos P = 0.6 \)

Use the Connect Line tool to draw one possible ΔPQR. Then drag letters to the vertices to label the triangle.

Notes on Scoring

This response earns no credit (0 points) because it shows an incorrect triangle with \(\sin P = \left(\frac{6}{10} \right) \), but \(\cos P = \frac{8}{10} \) or \(\left(\frac{4}{5} \right) \), instead of \(\cos P = \frac{6}{10} \).
Geometry Practice Test

Question 5

Question and Scoring Guidelines
Question 5

Francisco asks the students in his school what pets they have. He studies the events shown.

- Event S: The student has a cat.
- Event T: The student has a dog.

Francisco finds that the two events are independent.

Select all the equations that must be true for events S and T.

- $P(S|T) = P(S)$
- $P(S|T) = P(T)$
- $P(T|S) = P(S)$
- $P(T|S) = P(T)$
- $P(S \cup T) = P(S) \cdot P(T)$
- $P(S \cap T) = P(S) \cdot P(T)$

Points Possible: 1

Content Cluster: Understand independence and conditional probability, and use them to interpret data.

Content Standard: Understand the conditional probability of A given B as $P(A \text{ and } B)/P(B)$, and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B. (S.CP.3)★

(★) indicates that modeling should be incorporated into the standard.
Scoring Guidelines

Rationale for First Option: **Key** - The student correctly identified that if the two events are independent, then the conditional probability of S given T, or P(S | T), is equal to a probability of S, or P(S).

Rationale for Second Option: This is incorrect. The student may have thought that the probability of S given T, or P(S | T), is defined by the conditional event, P(T).

Rationale for Third Option: This is incorrect. The student may have thought that the probability of T given S, or P(T | S), is defined by the probability of the conditional event S or P(S).

Rationale for Fourth Option: **Key** - The student correctly identified that if the two events are independent, then the conditional probability of T given S, or P(T | S), must be equal to a probability of T, or P(T).

Rationale for Fifth Option: This is incorrect. The student may have mistaken “union” for “intersection” of the probabilities, and concluded that the probability of a union of two events P(T ∪ S) is the product of probabilities, P(S) • P(T).

Rationale for Sixth Option: **Key** - The student correctly identified that if two events S and T are independent, then the probability of the intersection of two events, or events occurring together, P(S ∩ T), is equal to the product of their probabilities, P(S) • P(T).
Geometry Practice Test

Question 5

Sample Responses
Sample Response: 1 point

Francisco asks the students in his school what pets they have. He studies the events shown.

- Event S: The student has a cat.
- Event T: The student has a dog.

Francisco finds that the two events are independent.

Select all the equations that must be true for events S and T.

- $P(S|T) = P(S)$
- $P(S|T) = P(T)$
- $P(T|S) = P(S)$
- $P(T|S) = P(T)$
- $P(S \cup T) = P(S) \cdot P(T)$
- $P(S \cap T) = P(S) \cdot P(T)$

Notes on Scoring

This response receives full credit (1 point) because it selects all three correct answer choices, A, D and F, and no incorrect answer choices.
Sample Response: 0 points

Francisco asks the students in his school what pets they have. He studies the events shown.
- Event S: The student has a cat.
- Event T: The student has a dog.

Francisco finds that the two events are independent.
Select all the equations that must be true for events S and T.

- $P(S|T) = P(S)$
- $P(S|T) = P(T)$
- $P(T|S) = P(S)$
- $P(T|S) = P(T)$
- $P(S \cup T) = P(S) \cdot P(T)$
- $P(S \cap T) = P(S) \cdot P(T)$

Notes on Scoring
This response receives no credit (0 points) because it selects three correct and one incorrect answer choices.
Sample Response: 0 points

Francisco asks the students in his school what pets they have. He studies the events shown.
- Event S: The student has a cat.
- Event T: The student has a dog.

Francisco finds that the two events are independent.

Select all the equations that must be true for events S and T.

- $P(S|T) = P(S)$ [Correct]
- $P(S|T) = P(T)$ [Incorrect]
- $P(T|S) = P(S)$ [Incorrect]
- $P(T|S) = P(T)$ [Incorrect]
- $P(S \cup T) = P(S) \cdot P(T)$ [Correct]
- $P(S \cap T) = P(S) \cdot P(T)$ [Correct]

Notes on Scoring

This response receives no credit (0 points) because it selects only two correct answer choices.
Geometry Practice Test

Question 6

Question and Scoring Guidelines
Question 6

Quadrilateral $ABCD$ is inscribed in circle O, as shown.

What is the value of y?

$y =$

Points Possible: 1

Content Cluster: Understand and apply theorems about circles.

Content Standard: Construct the inscribed and circumscribed circles of a triangle; prove and apply the property that opposite angles are supplementary for a quadrilateral inscribed in a circle. (G.C.3)
Scoring Guidelines

Exemplar Response

- $y = 97$

Other Correct Responses

- Any equivalent value

For this item, a full-credit response includes:

- The correct value (1 point).
Geometry Practice Test

Question 6

Sample Responses
Sample Response: 1 point

Quadrilateral ABCD is inscribed in circle O, as shown.

What is the value of y?

$$y = 97$$

Notes on Scoring

This response earns full credit (1 point) because it shows the correct value for y.

The solution is based on the theorem that opposite angles of a quadrilateral inscribed in a circle are supplementary, or have a sum of 180°. Using this fact, $y + 83 = 180$ and $y = 97°$.
Sample Response: 1 point

Quadrilateral ABCD is inscribed in circle O, as shown.

What is the value of \(y \)?

\[y = 97.0 \]

Notes on Scoring

This response earns full credit (1 point) because it shows the correct value for \(y \).

The solution is based on the theorem that opposite angles of a quadrilateral inscribed in a circle are supplementary, or have a sum of 180°. Using this fact, \(y + 83 = 180 \) and \(y = 97° \), which equals 97.0°.
Sample Response: 0 points

Quadrilateral $ABCD$ is inscribed in circle O, as shown.

What is the value of y?

$y = 83$

Notes on Scoring

This response earns no credit (0 points) because it shows an incorrect value for y. The student may have incorrectly thought that the measures of opposite angles of a quadrilateral inscribed in a circle are equal.
Sample Response: 0 points

Quadrilateral ABCD is inscribed in circle O, as shown.

What is the value of y?

\[y = 90 \]

Notes on Scoring

This response earns no credit (0 points) because it shows an incorrect value for \(y \). The student may have incorrectly thought that angle \(y \) is a right angle which measures 90°.
Geometry Practice Test

Question 7

Question and Scoring Guidelines
Question 7

Triangle ABC is shown.

Given: Triangle ABC is isosceles. Point D is the midpoint of AC.

Prove: $\angle BAC \cong \angle BCA$

Place reasons in the table to complete the proof.

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Triangle ABC is isosceles. D is the midpoint of AC.</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. $\overline{AD} \cong \overline{DC}$</td>
<td>2. Definition of midpoint</td>
</tr>
<tr>
<td>3. $\overline{BA} \cong \overline{BC}$</td>
<td>3. Definition of isosceles triangle</td>
</tr>
<tr>
<td>4. \overline{BD} exists.</td>
<td>4. A single line segment can be drawn between any two points.</td>
</tr>
<tr>
<td>5. $\overline{BD} \cong \overline{BD}$</td>
<td>5.</td>
</tr>
<tr>
<td>6. $\triangle ABD \cong \triangle CBD$</td>
<td>6.</td>
</tr>
<tr>
<td>7. $\angle BAC \cong \angle BCA$</td>
<td>7.</td>
</tr>
</tbody>
</table>

- AA congruency postulate
- SAS congruency postulate
- SSS congruency postulate
- Corresponding parts of congruent triangles are congruent

Points Possible: 1

Content Cluster: Prove geometric theorems both formally and informally using a variety of methods.

Content Standard: Prove and apply theorems about triangles. Theorems include but are not restricted to the following: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point. (G.CO.10)
Scoring Guidelines

Exemplar Response

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Triangle ABC is isosceles.</td>
<td>1. Given</td>
</tr>
<tr>
<td>D is the midpoint of \overline{AC}.</td>
<td></td>
</tr>
<tr>
<td>2. $\overline{AD}$$\cong$$\overline{DC}$</td>
<td>2. Definition of midpoint</td>
</tr>
<tr>
<td>3. $\overline{BA}$$\cong$$\overline{BC}$</td>
<td>3. Definition of isosceles triangle</td>
</tr>
<tr>
<td>4. \overline{BD} exists.</td>
<td>4. A line segment can be drawn between any two points.</td>
</tr>
<tr>
<td>5. $\overline{BD}$$\cong$$\overline{BD}$</td>
<td>5. Reflexive property</td>
</tr>
<tr>
<td>6. $\triangle ABD$$\cong$$\triangle CBD$</td>
<td>6. SSS postulate</td>
</tr>
<tr>
<td>7. $\angle BAC$$\cong$$\angle BCA$</td>
<td>7. Corresponding parts of congruent triangles are congruent.</td>
</tr>
</tbody>
</table>

Other Correct Responses

- N/A

For this item, a full-credit response includes:

- A correctly completed proof (1 point).
Geometry
Practice Test

Question 7

Sample Responses
Triangle ABC is shown.

Given: Triangle ABC is isosceles. Point D is the midpoint of AC.

Prove: \(\angle BAC \cong \angle BCA \)

Place reasons in the table to complete the proof.

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Triangle ABC is isosceles. D is the midpoint of AC.</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. 2. AD (\cong) DC</td>
<td>2. Definition of midpoint</td>
</tr>
<tr>
<td>3. 3. BA (\cong) BC</td>
<td>3. Definition of isosceles triangle</td>
</tr>
<tr>
<td>4. 4. BD exists.</td>
<td>4. A single line segment can be drawn between any two points.</td>
</tr>
<tr>
<td>5. 5. BD (\cong) BD</td>
<td>5. Reflexive property</td>
</tr>
<tr>
<td>6. 6. (\triangle ABD \cong \triangle CBD)</td>
<td>6. SSS congruency postulate</td>
</tr>
<tr>
<td>7. 7. (\angle BAC \cong \angle BCA)</td>
<td>7. Corresponding parts of congruent triangles are congruent.</td>
</tr>
</tbody>
</table>

AA congruency postulate
SAS congruency postulate
Symmetric property
Midpoint theorem
Notes on Scoring

This response earns full credit (1 point) because it shows a Correct selection of reasons supporting a geometric proof about base angles of an isosceles triangle.

In this situation, the existence of three pairs of corresponding congruent sides (\(AB\) and \(BC\), \(AD\) and \(DC\), \(BD\) and \(BD\)) supports the statement about triangle congruency (triangles ABD and CBD are congruent by the SSS congruency postulate). Having justified a congruency of the triangles, it follows that angles BAC and BCA are congruent because they are corresponding parts of congruent triangles.
Sample Response: 0 points

Triangle ABC is shown.

Given: Triangle ABC is isosceles. Point D is the midpoint of \(\overline{AC} \).

Prove: \(\angle BAC \cong \angle BCA \)

Place reasons in the table to complete the proof.

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Triangle ABC is isosceles. D is the midpoint of (\overline{AC}).</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. (\overline{AD} \cong \overline{DC})</td>
<td>2. Definition of midpoint</td>
</tr>
<tr>
<td>3. (\overline{BA} \cong \overline{BC})</td>
<td>3. Definition of isosceles triangle</td>
</tr>
<tr>
<td>4. (\overline{BD}) exists.</td>
<td>4. A single line segment can be drawn between any two points.</td>
</tr>
<tr>
<td>5. (\overline{BD} \cong \overline{BD})</td>
<td>5. Reflexive property</td>
</tr>
<tr>
<td>6. (\triangle ABD \cong \triangle CBD)</td>
<td>6. SSS congruency postulate</td>
</tr>
<tr>
<td>7. (\angle BAC \cong \angle BCA)</td>
<td>7. Symmetric property</td>
</tr>
</tbody>
</table>

AA congruency postulate
SAS congruency postulate
Corresponding parts of congruent triangles are congruent.

Midpoint theorem
Notes on Scoring

This response earns no credit (0 points) because one of the reasons selected to support a geometric proof about base angles of an isosceles triangle is incorrect.

Angles BAC and BCA are congruent because they are corresponding parts of congruent triangles, not by the symmetric property.
Sample Response: 0 points

Triangle ABC is shown.

Given: Triangle ABC is isosceles. Point D is the midpoint of AC.

Prove: \(\angle BAC = \angle BCA \)

Place reasons in the table to complete the proof.

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Triangle ABC is isosceles. D is the midpoint of AC.</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. AD \cong DC</td>
<td>2. Definition of midpoint</td>
</tr>
<tr>
<td>3. BA \cong BC</td>
<td>3. Definition of isosceles triangle</td>
</tr>
<tr>
<td>4. (BD) exists.</td>
<td>4. A single line segment can be drawn between any two points.</td>
</tr>
<tr>
<td>5. (BD \cong BD)</td>
<td>5.</td>
</tr>
<tr>
<td>6. (\triangle ABD \cong \triangle CBD)</td>
<td>6. SSS congruency postulate</td>
</tr>
<tr>
<td>7. (\angle BAC \cong \angle BCA)</td>
<td>7. Corresponding parts of congruent triangles are congruent</td>
</tr>
</tbody>
</table>

AA congruency postulate | Symmetric property |
SAS congruency postulate | |
Reflexive property | Midpoint theorem |

Notes on Scoring

This response earns no credit (0 points) because it misses a reason (\(BD \cong BD \) by a reflexive property) necessary to support a geometric proof about base angles of an isosceles triangle.
Geometry Practice Test

Question 8

Question and Scoring Guidelines
Question 8

The proof shows that opposite angles of a parallelogram are congruent.

Given: ABCD is a parallelogram with diagonal AC.

Prove: \(\angle BAD \cong \angle DCB \)

Proof:

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCD is a parallelogram with diagonal AC.</td>
<td>Given</td>
</tr>
<tr>
<td>(AB \parallel CD) and (AD \parallel BC)</td>
<td>Definition of parallelogram</td>
</tr>
<tr>
<td>(\angle 2 \cong \angle 3)</td>
<td>Alternate interior angles are congruent.</td>
</tr>
<tr>
<td>(\angle 1 \cong \angle 4)</td>
<td>Measures of congruent angles are equal.</td>
</tr>
<tr>
<td>(m\angle 2 = m\angle 3) and (m\angle 1 = m\angle 4)</td>
<td>Addition property of equality</td>
</tr>
<tr>
<td>(m\angle 1 + m\angle 2 = m\angle 4 + m\angle 2)</td>
<td></td>
</tr>
<tr>
<td>(m\angle 1 + m\angle 2 = m\angle BAD)</td>
<td>Angle addition postulate</td>
</tr>
<tr>
<td>(m\angle 3 + m\angle 4 = m\angle DCB)</td>
<td>Substitution</td>
</tr>
<tr>
<td>(m\angle BAD = m\angle DCB)</td>
<td>Angles are congruent when their measures are equal.</td>
</tr>
</tbody>
</table>

What is the missing reason in this partial proof?

1. ASA
2. Substitution
3. Angle addition postulate
4. Alternate interior angles are congruent.

Points Possible: 1

Content Cluster: Prove geometric theorems both formally and informally using a variety of methods.

Content Standard: Prove and apply theorems about parallelograms. Theorems include but are not restricted to the following: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals. (G.CO.11)
Scoring Guidelines

Rationale for Option A: This is incorrect. The student may have realized that ASA could be used later in the proof, but the sides have not been proved congruent yet, so this is not the correct reason for this step.

Rationale for Option B: Key - The student noticed that the previous step just had angle 3 substituted in for angle 2.

Rationale for Option C: This is incorrect. The student may have noted that there are angles being added, but that does not justify the current step.

Rationale for Option D: This is incorrect. The student may have noted that the alternate interior angles are being used, but that does not justify the current step.
Sample Response: 1 point

The proof shows that opposite angles of a parallelogram are congruent.

![Parallelogram with Diagonal AC]

Given: \(ABCD\) is a parallelogram with diagonal \(AC\).
Prove: \(\angle BAD \cong \angle DCB\)

Proof:

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ABCD) is a parallelogram with diagonal (AC).</td>
<td>Given</td>
</tr>
<tr>
<td>(AB \parallel CD) and (AD \parallel BC)</td>
<td>Definition of parallelogram</td>
</tr>
<tr>
<td>(\angle 2 \cong \angle 3)</td>
<td>Alternate interior angles are congruent.</td>
</tr>
<tr>
<td>(\angle 1 \cong \angle 4)</td>
<td></td>
</tr>
<tr>
<td>(m \angle 2 = m \angle 3) and (m \angle 1 = m \angle 4)</td>
<td>Measures of congruent angles are equal.</td>
</tr>
<tr>
<td>(m \angle 1 + m \angle 2 = m \angle 4 + m \angle 2)</td>
<td>Addition property of equality</td>
</tr>
<tr>
<td>(m \angle 1 + m \angle 2 = m \angle 4 + m \angle 3)</td>
<td>?</td>
</tr>
<tr>
<td>(m \angle 1 + m \angle 2 = m \angle BAD)</td>
<td>Angle addition postulate</td>
</tr>
<tr>
<td>(m \angle 3 + m \angle 4 = m \angle DCB)</td>
<td></td>
</tr>
<tr>
<td>(m \angle BAD = m \angle DCB)</td>
<td>Substitution</td>
</tr>
<tr>
<td>(\angle BAD \cong \angle DCB)</td>
<td>Angles are congruent when their measures are equal.</td>
</tr>
</tbody>
</table>

What is the missing reason in this partial proof?

- ASA
- Substitution
- Angle addition postulate
- Alternate interior angles are congruent.
Geometry Practice Test

Question 9

Question and Scoring Guidelines
Question 9

Which diagram shows only the first step of constructing the line perpendicular to \(\overline{AB} \) through point \(P \)?

![Diagrams A and C showing the first step of constructing a line perpendicular to \(\overline{AB} \) through point \(P \).]

Points Possible: 1

Content Cluster: Make geometric constructions.

Content Standard: Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line. (G.CO.12)
Scoring Guidelines

Rationale for Option A: This is incorrect. The student may not have realized that there are other steps between creating two points on a line segment AB that are equidistant from point P and drawing the line through point P perpendicular to the line segment AB.

Rationale for Option B: This is incorrect. The student may not have realized that the arc marks above and below point P cannot be constructed before constructing points on line segment AB that are equidistant from point P.

Rationale for Option C: This is incorrect. The student may have identified the last step instead of the first.

Rationale for Option D: Key – The student correctly identified that the first step is to create two points on line segment AB that are equidistant from point P, to use as the centers for constructing arcs above and below point P.
Sample Response: 1 point

Which diagram shows only the first step of constructing the line perpendicular to AB through point P?

A

B

C
Geometry Practice Test

Question 10

Question and Scoring Guidelines
Parallelogram ABCD is shown. Point E is the midpoint of segment AB. Point F is the midpoint of segment CD.

Which transformation carries the parallelogram onto itself?

A. a reflection across line segment AC
B. a reflection across line segment EF
C. a rotation of 180 degrees clockwise about the origin
D. a rotation of 180 degrees clockwise about the center of the parallelogram

Points Possible: 1

Content Cluster: Experiment with transformations in the plane.

Content Standard: Identify the symmetries of a figure, which are the rotations and reflections that carry it onto itself. (G.C.O.3)
Scoring Guidelines

Rationale for Option A: This is incorrect. The student may have thought that if diagonal \overline{AC} divides $ABCD$ into two congruent triangles, then the parallelogram would have a line of symmetry over diagonal \overline{AC}. However, since \overline{AC} is not perpendicular to \overline{BD}, vertex B will not be carried onto vertex D.

Rationale for Option B: This is incorrect. The student may have thought that since points E and F are midpoints of the sides \overline{AB} and \overline{CD}, the parallelogram has a horizontal line of symmetry. However, since \overline{EF} is not perpendicular to \overline{AB} and \overline{CD}, vertex A will not be carried onto vertex B, and vertex D will not be carried onto vertex C.

Rationale for Option C: This is incorrect. The student may have realized that a 180-degree rotation could carry the parallelogram onto itself, but did not take into account that this depends on where the center of rotation is. When the center of rotation is at the origin, the image of the parallelogram is in Quadrant III, meaning the image will not carry onto the pre-image.

Rationale for Option D: Key - The student noted that all parallelograms have 180-degree rotational symmetry about the center of the parallelogram (i.e., vertex A will be carried onto vertex C, vertex B will be carried onto vertex D, vertex C will be carried onto vertex A, and vertex D will be carried onto vertex B).
Parallelogram $ABCD$ is shown. Point E is the midpoint of segment AB. Point F is the midpoint of segment CD.

Which transformation carries the parallelogram onto itself?

- a reflection across line segment AC
- a reflection across line segment EF
- a rotation of 180 degrees clockwise about the origin
- a rotation of 180 degrees clockwise about the center of the parallelogram
Geometry Practice Test

Question 11

Question and Scoring Guidelines
Question 11

Square $ABCD$ is transformed to create the image $A'B'C'D'$, as shown.

Select all of the transformations that could have been performed.

- □ a reflection across the line $y = x$
- □ a reflection across the line $y = -2x$
- □ a rotation of 180 degrees clockwise about the origin
- □ a reflection across the x-axis, and then a reflection across the y-axis
- □ a rotation of 270 degrees counterclockwise about the origin, and then a reflection across the x-axis

Points Possible: 1

Content Cluster: Understand congruence in terms of rigid motions.

Content Standard: Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent. (G.CO.6)
Scoring Guidelines

Rationale for First Option: This is incorrect. The student may have thought that both given figures have to be carried onto themselves by reflecting across \(y = x \), instead of carrying \(ABCD \) onto \(A'B'C'D' \).

Rationale for Second Option: This is incorrect. The student may have seen that the line of reflection of \(y = -2x \) would create an image of square \(ABCD \) in Quadrant III, but did not confirm that the line of reflection is a perpendicular bisector of each line segment created by connecting corresponding vertices.

Rationale for Third Option: Key – The student correctly identified that with a 180-degree rotation, any point \((x, y)\) will carry onto a point \((-x, -y)\), so that a point \(A (1, 1) \) carries onto \(A' (-1, -1) \); \(B (1, 4) \) carries onto \(B' (-1, -4) \); \(C (4, 4) \) carries onto \(C' (-4, -4) \) and \(D (4, 1) \) carries onto \(D' (-4, -1) \).

Rationale for Fourth Option: Key – The student correctly identified that with a reflection across the \(x \)-axis, any point \((x, y)\) will carry onto the point \((x, -y)\), and then, the next reflection across the \(y \)-axis, will carry any point \((x, -y)\) onto \((-x, -y)\). Therefore, point \(A (1, 1) \) first carries onto \((1, -1) \) and then onto \(A' (-1, -1) \); point \(B (1, 4) \) first carries onto \((1, -4) \) and then onto \(B' (-1, -4) \); point \(C (4, 4) \) first carries onto \((4, -4) \) and then onto \(C' (-4, -4) \); and point \(D (4, 1) \) first carries onto \((4, -1) \) and then onto \(D' (-4, -1) \).

Rationale for Fifth Option: This is incorrect. The student may have seen that this set of transformations creates a final image in the same location as \(A'B'C'D' \) but did not see that this set of transformations does not carry the vertices in \(ABCD \) to their corresponding vertices in \(A'B'C'D' \).
Geometry Practice Test

Question 11

Sample Responses
Sample Response: 1 point

Square ABCD is transformed to create the image A'B'C'D', as shown.

Select all of the transformations that could have been performed.

☐ a reflection across the line $y = x$
☐ a reflection across the line $y = -2x$
☑ a rotation of 180 degrees clockwise about the origin
☑ a reflection across the x-axis, and then a reflection across the y-axis
☐ a rotation of 270 degrees counterclockwise about the origin, and then a reflection across the x-axis

Notes on Scoring

This response earns full credit (1 point) because it selects both correct options, C and D, and no incorrect answer choices.
Square ABCD is transformed to create the image A'B'C'D', as shown.

Select all of the transformations that could have been performed.

- [x] a reflection across the line $y = x$
- [] a reflection across the line $y = -2x$
- [x] a rotation of 180 degrees clockwise about the origin
- [x] a reflection across the x-axis, and then a reflection across the y-axis
- [] a rotation of 270 degrees counterclockwise about the origin, and then a reflection across the x-axis

Notes on Scoring

This response earns no credit (0 points) because it selects both correct options, C and D, and one incorrect option, A.
Sample Response: 0 points

Square ABCD is transformed to create the image A'B'C'D', as shown.

Select all of the transformations that could have been performed.

- [] a reflection across the line $y = x$
- [] a reflection across the line $y = -2x$
- [] a rotation of 180 degrees clockwise about the origin
- [x] a reflection across the x-axis, and then a reflection across the y-axis
- [x] a rotation of 270 degrees counterclockwise about the origin, and then a reflection across the x-axis

Notes on Scoring

This response earns no credit (0 points) because it selects one correct option, D, and one incorrect option, E.
Geometry Practice Test

Question 12

Question and Scoring Guidelines
Question 12

The planets in our solar system can be modeled using spheres. The diameters for Jupiter and Saturn are shown in the diagram.

![Diagram of Jupiter and Saturn with diameters]

The volume of Saturn is 59.9% the volume of Jupiter.

What is Saturn’s diameter, \(d \), in kilometers? Round your answer to the nearest thousandth.

\[
\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
0 & _ & _ \\
_ & _ & _ \frac{1}{1000} \\
\end{array}
\]

Points Possible: 1

Content Cluster: Explain volume formulas, and use them to solve problems.

Content Standard: Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems. (G.GMD.3)★

(★) indicates that modeling should be incorporated into the standard.
Scoring Guidelines

Exemplar Response

• 120530.340

Other Correct Responses

• Any value between 120530 and 120531

For this item, a full-credit response includes:

• A correct value (1 point).
Geometry
Practice Test

Question 12

Sample Responses
The planets in our solar system can be modeled using spheres. The diameters for Jupiter and Saturn are shown in the diagram.

The volume of Saturn is 59.9% the volume of Jupiter.

What is Saturn’s diameter, \(d \), in kilometers? Round your answer to the nearest thousandth.

\[
120{530.340} \text{ km}
\]

Notes on Scoring

This response earns full credit (1 point) because it shows a correct answer for Saturn’s diameter, in kilometers, rounded to the nearest thousandth.

In this situation, the correct solution process uses the formula for the volume of a sphere, \(V = \frac{4}{3} \pi r^3 \), and the formula for the radius of a sphere being half of the diameter. A solution process may consist of two parts. In the first part, the process identifies the radius of Jupiter being half of the diameter, then uses the formula for finding the volume of Jupiter. In the second part, the process is reversed. First, it applies 59.9% to find the volume of Saturn, then it uses the formula for the volume of a sphere to find the radius of Saturn, and then it doubles the radius to find the diameter of Saturn.
The planets in our solar system can be modeled using spheres. The diameters for Jupiter and Saturn are shown in the diagram.

The volume of Saturn is 59.9% the volume of Jupiter.

What is Saturn’s diameter, d, in kilometers? Round your answer to the nearest thousandth.

Sample Response: 1 point

This response earns full credit (1 point) because it shows a correct answer for Saturn’s diameter, in kilometers, rounded to an allowable value between 120530 and 120531.

In this situation, the correct solution process uses the formula for the volume of a sphere, $V = \frac{4}{3} \pi r^3$, and the formula for the radius of a sphere being half of the diameter. A solution process may consist of two parts. In the first part, the process identifies the radius of Jupiter being the half of the diameter, then uses the formula for finding the volume of Jupiter. In the second part, the process is reversed. First, it applies 59.9% to find the volume of Saturn, then it uses the formula for the volume of a sphere to find the radius of Saturn, and then it doubles the radius to find the diameter of Saturn.
Sample Response: 0 points

The planets in our solar system can be modeled using spheres. The diameters for Jupiter and Saturn are shown in the diagram.

The volume of Saturn is 59.9% the volume of Jupiter.

What is Saturn’s diameter, \(d \), in kilometers? Round your answer to the nearest thousandth.

85647.416 \(km \)

Notes on Scoring

This response earns no credit (0 points) because it shows an incorrect answer for Saturn’s diameter, in kilometers, rounded to the nearest thousandth.
Sample Response: 0 points

The planets in our solar system can be modeled using spheres. The diameters for Jupiter and Saturn are shown in the diagram.

The volume of Saturn is 59.9% the volume of Jupiter.

What is Saturn’s diameter, d, in kilometers? Round your answer to the nearest thousandth.

241060.680 km

Notes on Scoring

This response earns no credit (0 points) because it shows an incorrect answer for Saturn’s diameter, in kilometers, rounded to the nearest thousandth.
Geometry Practice Test

Question 13

Question and Scoring Guidelines
Question 13

A cross section of a right triangular prism is created by a plane cut through the points shown and is also perpendicular to the opposite base.

What is the most specific name of the shape representing the cross section?

A) triangle
B) rectangle
C) trapezoid
D) parallelogram

Points Possible: 1

Content Cluster: Visualize relationships between two-dimensional and three-dimensional objects.

Content Standard: Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects. (G.GMD.4)
Scoring Guidelines

Rationale for Option A: This is incorrect. The student may have confused a cross section intersecting both points and being perpendicular to the opposite base with the top base of the prism being in the shape of a triangle containing both points.

Rationale for Option B: Key – The student noted that the cross section containing both points and being perpendicular to the opposite base is a quadrilateral with four right angles and congruent opposite sides, or a rectangle.

Rationale for Option C: This is incorrect. The student may have ignored that the cross section is perpendicular to the opposite base and incorrectly concluded that it forms a shape that has only one pair of non-congruent parallel sides and no right angles.

Rationale for Option D: This is incorrect. The student may have realized that the cross section has two pairs of parallel sides, but ignored that because it is perpendicular to the base, so all of the angles are right angles.

Sample Response: 1 point

A cross section of a right triangular prism is created by a plane cut through the points shown and is also perpendicular to the opposite base.

What is the most specific name of the shape representing the cross section?

A triangle
B rectangle
C trapezoid
D parallelogram
Geometry Practice Test
Question 14
Question and Scoring Guidelines
Question 14

A circle with center O is shown.

Create the equation for the circle.

Points Possible: 1

Content Cluster: Translate between the geometric description and the equation for a conic section.

Content Standard: Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.

(G.GPE.1)
Scoring Guidelines

Exemplar Response

• \((x - 1)^2 + (y - 1)^2 = 4^2\)

Other Correct Responses

• Any equivalent equation

For this item, a full-credit response includes:

• A correct equation (1 point).
Geometry Practice Test

Question 14

Sample Responses
A circle with center O is shown.

Create the equation for the circle.

$$(x-1)^2 + (y-1)^2 = 4^2$$
Notes on Scoring

This response earns full credit (1 point) because it shows the correct center-radius form for the equation of the circle \((x - 1)^2 + (y - 1)^2 = 4^2\).

On the coordinate plane, the center-radius form for the equation of a circle with center \((h, k)\) and radius \(r\) is \((x - h)^2 + (y - k)^2 = r^2\). The given circle has a center at \((1, 1)\) and a radius of 4 units. By substituting \(h = 1, k = 1\) and \(r = 4\) in the center-radius form for \(h, k\) and \(r\), respectively, the equation of the circle is \((x - 1)^2 + (y - 1)^2 = 4^2\), which is equivalent to the equation \((x - 1)^2 + (y - 1)^2 = 16\).
A circle with center O is shown.

Create the equation for the circle.

\[x^2 - 2x + y^2 - 2y - 14 = 0 \]
Notes on Scoring

This response earns full credit (1 point) because it shows the correct general form for the equation of the circle \((x - 1)^2 + (y - 1)^2 = 16\)

On the coordinate plane, the center-radius form for the equation of a circle with the center \((h, k)\) and radius \(r\) is \((x - h)^2 + (y - k)^2 = r^2\). The given circle has a center at \((1, 1)\) and a radius of 4 units. By substituting \(h = 1, k = 1\) and \(r = 4\) in the center-radius form for \(h, k\) and \(r\), respectively, the equation of the circle is \((x - 1)^2 + (y - 1)^2 = 16\). When the equation is multiplied out and like terms are combined, the equation appears in general form, \(x^2 - 2x + y^2 - 2y - 14 = 0\)
Sample Response: 0 points

Create the equation for the circle.

\((x-1)^2 + (y+1)^2 = 4^2\)

Notes on Scoring

This response earns no credit (0 points) because it shows an incorrect center-radius form for the equation of the circle. The correct equation is center-radius form is

\((x - 1)^2 + (y - 1)^2 = 4^2\)
Sample Response: 0 points

A circle with center O is shown.

Create the equation for the circle.

\[(x+1)^2 + (y-1)^2 = 4^2\]

Notes on Scoring

This response earns no credit (0 points) because it shows an incorrect center-radius form for the equation of the circle. The correct equation in center-radius form is

\[(x - 1)^2 + (y - 1)^2 = 4^2\]
Geometry Practice Test

Question 15

Question and Scoring Guidelines
Question 15

The graph of line m is shown.

What is the equation of the line that is perpendicular to line m and passes through the point $(3, 2)$?

$y =$

Points Possible: 1

Content Cluster: Use coordinates to prove simple geometric theorems algebraically and to verify specific geometric statements.

Content Standard: Justify the slope criteria for parallel and perpendicular lines, and use them to solve geometric problems, e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point. (G.GPE.5)
Scoring Guidelines

Exemplar Response

• $y = \frac{2}{5}x + \frac{4}{5}$

Other Correct Responses

• Any equivalent equation

For this item, a full-credit response includes:

• A correct equation (1 point).
Geometry Practice Test

Question 15

Sample Responses
Sample Response: 1 point

The graph of line m is shown.

What is the equation of the line that is perpendicular to line m and passes through the point $(3, 2)$?

$y = \frac{2}{5}x + \frac{4}{5}$
Notes on Scoring

This response earns full credit (1 point) because it shows a correct equation of a line perpendicular to a given line that passes through a given point.

For this situation, the student can find the slope-intercept form of the equation of the line to get the correct answer. The slope of any line perpendicular to the given line is \(-\frac{2}{5} \) because it is the opposite reciprocal of the slope of line \(m, -\frac{5}{2} \). If the slope of a perpendicular line, \(\frac{2}{5} \), and the point it passes through, \((3, 2)\), are substituted back into the slope-intercept form \(y = mx + b \), the equation becomes \(2 = \frac{2}{5} \cdot 3 + b \). From here, \(b = \frac{4}{5} \), and the \(y \)-intercept of the perpendicular line is located at \((0, \frac{4}{5})\). The equation for the perpendicular line is then \(y = \frac{2}{5} \cdot x + \frac{4}{5} \).
Sample Response: 1 point

The graph of line m is shown.

What is the equation of the line that is perpendicular to line m and passes through the point (3, 2)?

$$y = 0.4(x-3)+2$$
Notes on Scoring

This response earns full credit (1 point) because it shows a correct equivalent equation of a line perpendicular to a given line that passes through a given point.

For this situation, the student can solve the point-slope form of the equation of the perpendicular line for y to get the correct answer. The slope of any line perpendicular to the given line is $(-\frac{2}{5})$, because it is the opposite reciprocal of the slope of line m, $-\frac{5}{2}$. If the slope of a perpendicular line, $\frac{2}{5}$ or 0.4, and the point it passes through, $(3, 2)$, are substituted back into the slope-point form $y - y_1 = m(x - x_1)$, the form becomes $y - 2 = 0.4(x - 3)$, and then $y = 0.4(x - 3) + 2$.
Notes on Scoring

This response earns no credit (0 points) because it shows an incorrect equation of the line perpendicular to a given line that passes through a given point.
Sample Response: 0 points

The graph of line m is shown.

What is the equation of the line that is perpendicular to line m and passes through the point $(3, 2)$?

$$y = \frac{2}{5}x + \frac{8}{5}$$

Notes on Scoring

This response earns no credit (0 points) because it shows an incorrect equation of the line perpendicular to a given line that passes through a given point.
Geometry
Practice Test

Question 16

Question and Scoring Guidelines
Question 16

Line segment AC has endpoints A (−1, −3.5) and C (5, −1).

Point B is on line segment AC and is located at (0.2, −3).

What is the ratio of $\frac{AB}{BC}$?

Points Possible: 1

Content Cluster: Use coordinates to prove simple geometric theorems algebraically and to verify specific geometric statements.

Content Standard: Find the point on a directed line segment between two given points that partitions the segment in a given ratio. (G.GPE.6)
Scoring Guidelines

Exemplar Response

- \(\frac{1}{4} \)

Other Correct Responses

- Any equivalent value

For this item, a full-credit response includes:

- A correct ratio (1 point).
Geometry Practice Test

Question 16

Sample Responses
Sample Response: 1 point

Line segment AC has endpoints A (-1, -3.5) and C (5, -1). Point B is on line segment AC and is located at (0.2, -3). What is the ratio of \(\frac{AB}{BC} \)?

\[
\frac{1}{4}
\]

Notes on Scoring

This response earns full credit (1 point) because it shows a correct ratio of \(\frac{AB}{BC} \) or \(\frac{1}{4} \).

One of several ways to approach this situation is to use a distance formula, \(d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \), by substituting coordinates of points to find the length of a line segment AB and the length a line segment BC. Since AB = 1.3 and BC = 5.2, the ratio of \(\frac{AB}{BC} \) is \(\frac{1.3}{5.2} \) or \(\frac{1}{4} \).
Sample Response: 1 point

Line segment AC has endpoints A (−1, −3.5) and C (5, −1).

Point B is on line segment AC and is located at (0.2, −3).

What is the ratio of \(\frac{AB}{BC} \)?

0.25

Notes on Scoring

This response earns full credit (1 point) because it shows a correct ratio of \(\frac{AB}{BC} \) or \(\frac{1}{4} \) or .25.

One of several ways to approach this situation is to use a distance formula, \(d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \), by substituting coordinates of points to find the length of a line segment AB and the length of a line segment BC. Since \(AB = 1.3 \) and \(BC = 5.2 \), the ratio of \(\frac{AB}{BC} \) is \(\frac{1.3}{5.2} \) or \(\frac{1}{4} \).
Sample Response: 0 points

Line segment AC has endpoints A (-1, -3.5) and C (5, -1).

Point B is on line segment AC and is located at (0.2, -3).

What is the ratio of \(\frac{AB}{BC} \) ?

\[\frac{1}{6} \]

Notes on Scoring

This response earns no credit (0 points) because it shows an incorrect ratio of \(\frac{AB}{BC} \) as \(\frac{1}{6} \).
Sample Response: 0 points

Line segment AC has endpoints A (−1, −3.5) and C (5, −1).

Point B is on line segment AC and is located at (0.2, −3).

What is the ratio of $\frac{AB}{BC}$?

4

Notes on Scoring

This response earns no credit (0 points) because it shows an incorrect ratio of $\frac{AB}{BC}$ as 4.
Geometry Practice Test

Question 17

Question and Scoring Guidelines
Question 17

Triangle ABC has vertices at \((-4, 0), (-1, 6)\) and \((3, -1)\).

What is the perimeter of triangle ABC, rounded to the nearest tenth?

Points Possible: 1

Content Cluster: Use coordinates to prove simple geometric theorems algebraically and to verify specific geometric statements.

Content Standard: Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. \((G.GPE.7)\)★

★ indicates that modeling should be incorporated into the standard.
Scoring Guidelines

Exemplar Response

- 21.8

Other Correct Responses

- Any number greater than or equal to 21.7 and less than or equal to 22

For this item, a full-credit response includes:

- A correct value (1 point).
Geometry Practice Test

Question 17

Sample Responses
Sample Response: 1 point

Triangle ABC has vertices at (-4, 0), (-1, 6) and (3, -1).

What is the perimeter of triangle ABC, rounded to the nearest tenth?

21.8

Notes on Scoring

This response earns full credit (1 point) because it shows a correct value for the perimeter of triangle ABC, rounded to the nearest tenth.

The perimeter of triangle ABC is the sum of the three side lengths. The side lengths can be found by substituting the coordinates of the end points into the distance formula,

\[d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}, \]

two at a time. The length of side AB is \(\sqrt{(-4 + 1)^2 + (0 - 6)^2} \) or \(\sqrt{45} \); the length of side BC is \(\sqrt{(-1 - 3)^2 + (6 + 1)^2} \) or \(\sqrt{65} \); and the length of side AC is \(\sqrt{(-4 - 3)^2 + (0 + 1)^2} \) or \(\sqrt{50} \).

The sum of the three side lengths is approximately 21.841529 or 21.8 rounded to the nearest tenth. Answers between 21.7 and 22 are accepted to allow for minor rounding errors.
Sample Response: 1 point

Triangle ABC has vertices at (−4, 0), (−1, 6) and (3, −1).

What is the perimeter of triangle ABC, rounded to the nearest tenth?

21.9

Notes on Scoring

This response earns full credit (1 point) because it shows a correct allowed value for the perimeter of triangle ABC, rounded to the nearest tenth that is greater than or equal to 21.7 and less than or equal to 22.

The perimeter of triangle ABC is the sum of the three side lengths. The side lengths can be found by substituting the coordinates of the end points into the distance formula, $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$, two at a time. The length of side AB is $\sqrt{(-4 + 1)^2 + (0 - 6)^2}$ or $\sqrt{45}$; the length of side BC is $\sqrt{(-1 - 3)^2 + (6 + 1)^2}$ or $\sqrt{65}$; and the length of side AC is $\sqrt{(-4 - 3)^2 + (0 + 1)^2}$ or $\sqrt{50}$.

The sum of the three side lengths is approximately 21.841529 or 21.8 rounded to the nearest tenth. Answers between 21.7 and 22 are accepted to allow for minor rounding errors.
Sample Response: 1 point

Triangle ABC has vertices at $(-4, 0)$, $(-1, 6)$ and $(3, -1)$.

What is the perimeter of triangle ABC, rounded to the nearest tenth?

21.84

Notes on Scoring

This response earns full credit (1 point) because it shows a correct allowed value for the perimeter of triangle ABC, rounded to the nearest tenth.

The perimeter of triangle ABC is the sum of the three side lengths. The side lengths can be found by substituting the coordinates of the end points into the distance formula, $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$, two at a time. The length of side AB is $\sqrt{(-4 + 1)^2 + (0 - 6)^2}$ or $\sqrt{45}$; the length of side BC is $\sqrt{(-1 - 3)^2 + (6 + 1)^2}$ or $\sqrt{65}$; and the length of side AC is $\sqrt{(-4 - 3)^2 + (0 + 1)^2}$ or $\sqrt{50}$.

The sum of the three side lengths is approximately 21.841529 or 21.8 rounded to the nearest tenth. Answers between 21.7 and 22 are accepted to allow for minor rounding errors.
Sample Response: 0 points

Triangle ABC has vertices at (−4, 0), (−1, 6) and (3, −1).

What is the perimeter of triangle ABC, rounded to the nearest tenth?

28

Notes on Scoring

This response earns no credit (0 points) because it shows an incorrect value for a perimeter of a triangle ABC that falls outside of the allowable range of values.
Sample Response: 0 points

Triangle ABC has vertices at (−4, 0), (−1, 6) and (3, −1).

What is the perimeter of triangle ABC, rounded to the nearest tenth?

23

Notes on Scoring

This response earns no credit (0 points) because it shows an incorrect value for a perimeter of a triangle ABC that falls outside of the allowable range of values.
Geometry Practice Test

Question 18

Question and Scoring Guidelines
Question 18

Allison designs fancy boxes to fill with chocolates. The boxes are in the shape of a right square pyramid as shown, where $8y$ represents the length of one side of the base of the pyramid, and $5y$ represents the height of one triangular face of the pyramid.

The large size box must be designed to have a volume of 1,000 cubic centimeters.

A. Create an equation that can be used to calculate the length of the base and height of the triangular face of the box. Enter your equation in the first response box.

B. What dimensions for the length, in centimeters, of the base and the height of the triangular face, in centimeters, satisfy these constraints?

A.

B. $\text{Length of Base} = \underline{} \text{ centimeters}$

B. $\text{Height of Triangular Face} = \underline{} \text{ centimeters}$

Points Possible: 2

Content Cluster: Apply geometric concepts in modeling situations.

Content Standard: Apply geometric methods to solve design problems, e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios. (G.MG.3)★

(★) indicates that modeling should be incorporated into the standard.
Scoring Guidelines

Exemplar Response

- A. $1000 = 64y^3$
- B. Length of Base = 20
- B. Height of Triangular Face = 12.5

Other Correct Responses

- Any equivalent equation for Part A
- Any equivalent values for Part B

For this item, a full-credit response includes:

- A correct equation for Part A (1 point);
 AND
- A correct set of values for Part B (1 point).

Note: Students receive 1 point if their answer for Part A is equivalent to $1000 = \frac{1}{3}(8y)^2 \cdot 5y$, and if their answer for Part B is correct based off of this incorrect equation.
Geometry
Practice Test

Question 18

Sample Responses
Sample Response: 2 points

Allison designs fancy boxes to fill with chocolates. The boxes are in the shape of a right square pyramid as shown, where $8y$ represents the length of one side of the base of the pyramid, and $5y$ represents the height of one triangular face of the pyramid.

The large size box must be designed to have a volume of 1,000 cubic centimeters.

A. Create an equation that can be used to calculate the length of the base and height of the triangular face of the box. Enter your equation in the first response box.

B. What dimensions for the length, in centimeters, of the base and the height of the triangular face, in centimeters, satisfy these constraints?

A. $1000 = 64y^3$

B. Length of Base = 20 centimeters

B. Height of Triangular Face = 12.5 centimeters

...
Notes on Scoring

This response earns full credit (2 points) because it shows a correct equation that can be used to calculate the volume of a square pyramid and the two correct values for the length of the base and a correct height of the triangular face.

The formula for the volume of a square pyramid is \(V = \frac{1}{3}Bh \), where \(B \) is the area of the square base and \(h \) is the height of the pyramid. Since the length of the square base is \(8y \), the area of the square base is \((8y)^2 = 64y^2\). A cross-section of a pyramid that is created by a plane cut through the apex and that is perpendicular to the base forms an isosceles triangle. A half of this triangle is a right triangle with one leg being the height of a pyramid; another leg is half of a side of the square base, \(4y \), and the hypotenuse is the height of the triangular face, \(5y \). Dimensions of this right triangle are \(3y, 4y \) and \(5y \) (Pythagorean triple), where \(3y \) is the height of the pyramid. Thus, an equation representing the volume of the pyramid is \(1000 = \frac{1}{3} \cdot 64y^3 \cdot 3y \) or \(64y^3 = 1000 \).

The correct solution to this equation is \(y = 2.5 \). Using this value, the length of the base is \(8y \) or \(8 \cdot 2.5 = 20 \text{ cm} \), and the height of the triangular face is \(5y \) or \(12.5 \text{ cm} \).
Allison designs fancy boxes to fill with chocolates. The boxes are in the shape of a right square pyramid as shown, where $8y$ represents the length of one side of the base of the pyramid, and $5y$ represents the height of one triangular face of the pyramid.

The large size box must be designed to have a volume of 1,000 cubic centimeters.

A. Create an equation that can be used to calculate the length of the base and height of the triangular face of the box. Enter your equation in the first response box.

B. What dimensions for the length, in centimeters, of the base and the height of the triangular face, in centimeters, satisfy these constraints?

A. \[
\frac{1}{3}(8y)^2(3y)=1000
\]

B. \[
\text{Length of Base} = 8\sqrt[3]{\frac{1000}{64}} \text{ centimeters}
\]

B. \[
\text{Height of Triangular Face} = 5\sqrt[3]{\frac{1000}{64}} \text{ centimeters}
\]
Notes on Scoring

This response earns full credit (2 points) because it shows an equivalent equation for the correct equation that can be used to calculate the volume of a square pyramid and the two equivalent values for a correct length of the base and a correct height of the triangular face.

The formula for the volume of a square pyramid is $V = \frac{1}{3} Bh$, where B is the area of the square base and h is the height of a pyramid. Since the length of the square base is $8y$, the area of the square base is $(8y)^2 = 64y^2$. A cross-section of a pyramid that is created by a plane cut through the apex and that is perpendicular to the base forms an isosceles triangle. A half of this triangle is a right triangle with one leg being the height of a pyramid; another leg is half of a side of the square base, $4y$, and the hypotenuse is the height of the triangular face, $5y$. Dimensions of this right triangle are $3y$, $4y$ and $5y$ (Pythagorean triple), where $3y$ is the height of the pyramid. Thus, the equation representing the volume of the pyramid is $10000 = \frac{1}{3} \cdot (8y)^2 \cdot 3y$.

A correct solution to this equation is $\sqrt[3]{\frac{1000}{64}}$. Using this value, the length of the base is $8y$ or $8 \cdot \sqrt[3]{\frac{1000}{64}}$, and the height of the triangular face is $5y$ or $5 \cdot \sqrt[3]{\frac{1000}{64}}$.

149
Sample Response: 1 point

Allison designs fancy boxes to fill with chocolates. The boxes are in the shape of a right square pyramid as shown, where 8y represents the length of one side of the base of the pyramid, and 5y represents the height of one triangular face of the pyramid.

The large size box must be designed to have a volume of 1,000 cubic centimeters.

A. Create an equation that can be used to calculate the length of the base and height of the triangular face of the box. Enter your equation in the first response box.

B. What dimensions for the length, in centimeters, of the base and the height of the triangular face, in centimeters, satisfy these constraints?

A. \(\frac{(8y)^2(3y)}{3} = 1000 \)

B. Length of Base = 2.5 centimeters

B. Height of Triangular Face = 2.5 centimeters

Notes on Scoring

This response earns partial credit (1 point) because it shows an equation equivalent to the correct equation that can be used to calculate the volume of the square pyramid. The length of the base and the height of the triangular face are incorrect.
Sample Response: 1 point

Allison designs fancy boxes to fill with chocolates. The boxes are in the shape of a right square pyramid as shown, where $8y$ represents the length of one side of the base of the pyramid, and $5y$ represents the height of one triangular face of the pyramid.

The large size box must be designed to have a volume of 1,000 cubic centimeters.

A. Create an equation that can be used to calculate the length of the base and height of the triangular face of the box. Enter your equation in the first response box.

B. What dimensions for the length, in centimeters, of the base and the height of the triangular face, in centimeters, satisfy these constraints?

A. $\frac{1}{3}(8y)^2(5y) = 1000$

B. Length of Base = $8\sqrt[3]{\frac{75}{8}}$ centimeters

B. Height of Triangular Face = $5\sqrt[3]{\frac{75}{8}}$ centimeters

Notes on Scoring

This response earns partial credit (1 point) because it shows an incorrect equation (the height of the triangular face is mistakenly used instead of the height of the pyramid) to calculate the volume of a square pyramid, but correctly shows the length of the base and the height of the triangular face, based on this incorrect equation.
Sample Response: 0 points

Allison designs fancy boxes to fill with chocolates. The boxes are in the shape of a right square pyramid as shown, where $8y$ represents the length of one side of the base of the pyramid, and $5y$ represents the height of one triangular face of the pyramid.

The large size box must be designed to have a volume of 1,000 cubic centimeters.

A. Create an equation that can be used to calculate the length of the base and height of the triangular face of the box. Enter your equation in the first response box.

B. What dimensions for the length, in centimeters, of the base and the height of the triangular face, in centimeters, satisfy these constraints?

A. $\frac{1}{3}(8y)^2(5y)=1000$

B. Length of Base = 2.1 centimeters

B. Height of Triangular Face = 2.1 centimeters

Notes on Scoring

This response earns no credit (0 points) because it shows an incorrect equation and incorrect values for the lengths of the base and the height of the triangular face.
Sample Response: 0 points

Allison designs fancy boxes to fill with chocolates. The boxes are in the shape of a right square pyramid as shown, where 8y represents the length of one side of the base of the pyramid, and 5y represents the height of one triangular face of the pyramid.

The large size box must be designed to have a volume of 1,000 cubic centimeters.

A. Create an equation that can be used to calculate the length of the base and height of the triangular face of the box. Enter your equation in the first response box.

B. What dimensions for the length, in centimeters, of the base and the height of the triangular face, in centimeters, satisfy these constraints?

A. $8y \times 5y = 1000$

B. *Length of Base* = 2.1 centimeters

B. *Height of Triangular Face* = 2.1 centimeters

Notes on Scoring

This response earns no credit (0 points) because it shows an incorrect equation and incorrect values for the lengths of the base and the height of the triangular face.
Geometry Practice Test

Question 19

Question and Scoring Guidelines
Question 19

Kyle performs a transformation on a triangle. The resulting triangle is similar but not congruent to the original triangle.

Which transformation did Kyle perform on the triangle?

- A dilation
- B reflection
- C rotation
- D translation

Points Possible: 1

Content Cluster: Understand similarity in terms of similarity transformations.

Content Standard: Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides. (G.SRT.2)
Scoring Guidelines

Rationale for Option A: Key - The student noted that dilation will preserve the shape and orientation (measures of all angles remain the same) but may change the side lengths proportionally, making the triangles not congruent.

Rationale for Option B: This is incorrect. The student may have thought that since a reflection can change orientation, that would make the two triangles not congruent, not remembering that orientation does not affect the congruence of two shapes.

Rationale for Option C: This is incorrect. The student may have thought that since a rotation can change the placement of an object, that would make the two triangles not congruent, not remembering that placement does not affect the congruence of two triangles.

Rationale for Option D: This is incorrect. The student may have selected an option that definitely would produce congruence rather than one that would not produce congruence.

Sample Response: 1 point

Kyle performs a transformation on a triangle. The resulting triangle is similar but not congruent to the original triangle.

Which transformation did Kyle perform on the triangle?

- dilation
- reflection
- rotation
- translation
Geometry Practice Test

Question 20

Question and Scoring Guidelines
Question 20

Triangle ABC has vertices A (1, 1), B (2.5, 3), and C (0, -3). It is dilated by a scale factor of $\frac{1}{2}$ about the origin to create triangle A'B'C'.

What is the length, in units, of side B'C'?

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\frac{1}{2}$</td>
</tr>
</tbody>
</table>

Points Possible: 1

Content Cluster: Understand similarity in terms of similarity transformations.

Content Standard: Verify experimentally the properties of dilations given by a center and a scale factor:

b. The dilation of a line segment is longer or shorter in the ratio given by the scale factor. (G.SRT.1b)

Scoring Guidelines

Exemplar Response

- 3.25

Other Correct Responses

- Any equivalent value

For this item, a full-credit response includes:

- The correct length (1 point).
Geometry Practice Test

Question 20

Sample Responses
Sample Response: 1 point

Triangle ABC has vertices $A(1, 1)$, $B(2.5, 3)$, and $C(0, -3)$. It is dilated by a scale factor of $\frac{1}{2}$ about the origin to create triangle $A'B'C'$.

What is the length, in units, of side $B'C'$?

3.25

Notes on Scoring

This response earns full credit (1 point) because it shows the correct length of side $B'C'$.

When a triangle is dilated by a positive scale factor of $\frac{1}{2}$, all side lengths change by this scale factor, regardless of the center of dilation. The distance formula and coordinates of points $B(2.5, 3)$ and $C(0, -3)$ can be used to calculate the length of a side BC as $\sqrt{(2.5 - 0)^2 + (3 + 3)^2} = 6.5$. By applying the scale factor $\frac{1}{2}$ to the length of BC, the length of a side $B'C' = \frac{1}{2} \cdot BC = 3.25$ units.
Sample Response: 1 point

Triangle ABC has vertices A (1, 1), B (2.5, 3), and C (0, -3). It is dilated by a scale factor of $\frac{1}{2}$ about the origin to create triangle A'B'C'.

What is the length, in units, of side B'C'?

\[
\frac{13}{4}
\]

Notes on Scoring

This response earns full credit (1 point) because it shows the correct length of side $B'C'$.

When a triangle is dilated by a positive scale factor of $\frac{1}{2}$, all side lengths change by this scale factor, regardless of the center of dilation. The distance formula and coordinates of points B (2.5, 3) and C (0, -3) can be used to calculate the length of a side BC as $\sqrt{(2.5 - 0)^2 + (3 + 3)^2} = 6.5$. By applying the scale factor $\frac{1}{2}$ to the length of BC, the length of a side $B'C' = \frac{1}{2} \cdot BC = 3.25 = \frac{13}{4}$ units.
Sample Response: 0 points

Triangle ABC has vertices A (1, 1), B (2.5, 3), and C (0, -3). It is dilated by a scale factor of $\frac{1}{2}$ about the origin to create triangle $A'B'C'$.

What is the length, in units, of side $B'C'$?

6.5

Notes on Scoring

This response earns no credit (0 points) because it shows an incorrect length of side $B'C'$.
Sample Response: 0 points

Triangle ABC has vertices A (1, 1), B (2.5, 3), and C (0, -3). It is dilated by a scale factor of $\frac{3}{2}$ about the origin to create triangle A'B'C'.

What is the length, in units, of side B'C'?

8.5

Notes on Scoring

This response earns no credit (0 points) because it shows an incorrect length of side B'C'.
Geometry Practice Test

Question 21

Question and Scoring Guidelines
Question 21

Triangle \(\triangle PQR \) is shown, where \(\overline{ST} \parallel \overline{RQ} \).

\[\frac{SR}{PS} = \frac{TQ}{PT} \]

Marta wants to prove that \(\frac{SR}{PS} = \frac{TQ}{PT} \).

Place a statement or reason in each blank box to complete Marta’s proof.

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\overline{ST} \parallel \overline{RQ})</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. (\angle PST \cong \angle R) and (\angle PTS \cong \angle Q)</td>
<td>2. If two parallel lines are cut by a transversal, then corresponding angles are congruent.</td>
</tr>
<tr>
<td>3. (\triangle PQR \sim \triangle PTS)</td>
<td>3.</td>
</tr>
<tr>
<td>4.</td>
<td>4.</td>
</tr>
<tr>
<td>5. (PR = PS + SR, \ PQ = PT + TQ)</td>
<td>5. Segment addition postulate</td>
</tr>
<tr>
<td>6. (\frac{PS + SR}{PS} = \frac{PT + TQ}{PT})</td>
<td>6. Substitution</td>
</tr>
<tr>
<td>7. (\frac{PS}{PS} + \frac{SR}{PS} = \frac{PT}{PT} + \frac{TQ}{PT})</td>
<td>7. Commutative property of addition</td>
</tr>
<tr>
<td>8. (\frac{SR}{PS} = \frac{TQ}{PT})</td>
<td>8. Subtraction property of equality</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\frac{PR}{PS} &= \frac{PQ}{PT} & \frac{PS}{PT} &= \frac{SR}{ST} & \angle P &= \angle P \\
\text{AA Similarity} & & \text{ASA Similarity} & & \text{SSS Similarity} \\
\text{Reflexive property} & & \text{Segment addition postulate} & & \text{Corresponding sides of similar triangles are proportional.} \\
\text{Corresponding sides of similar triangles are congruent.} & & \text{If two parallel lines are cut by a transversal, then alternate interior angles are congruent.} & & \text{If two parallel lines are cut by a transversal, then alternate exterior angles are congruent.}
\end{align*}
\]
Points Possible: 1

Content Cluster: Prove and apply theorems both formally and informally involving similarity using a variety of methods.

Content Standard: Prove and apply theorems about triangles. Theorems include but are not restricted to the following: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity. (G.SRT.4)

Scoring Guidelines

Exemplar Response

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ST \parallel RQ</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. ∠PST \equiv ∠R and ∠PTS \equiv ∠Q</td>
<td>2. If two parallel lines are cut by a transversal, then corresponding angles are congruent.</td>
</tr>
<tr>
<td>3. △PQR \sim △PTS</td>
<td>3. AA Similarity</td>
</tr>
<tr>
<td>4. \frac{PR}{PS} = \frac{PQ}{PT}</td>
<td>4. Corresponding sides of similar triangles are proportional.</td>
</tr>
<tr>
<td>5. PR = PS + SR, PQ = PT + TQ</td>
<td>5. Segment addition postulate</td>
</tr>
<tr>
<td>6. \frac{PS + SR}{PS} = \frac{PT + TQ}{PT}</td>
<td>6. Substitution</td>
</tr>
<tr>
<td>7. \frac{PS + SR}{PS} = \frac{PT}{PT} + \frac{TQ}{PT}</td>
<td>7. Commutative property of addition</td>
</tr>
<tr>
<td>8. \frac{SR}{PS} = \frac{TQ}{PT}</td>
<td>8. Subtraction property of equality</td>
</tr>
</tbody>
</table>

Other Correct Responses

- N/A

For this item, a full-credit response includes:

- A correct proof (1 point).
Geometry Practice Test

Question 21

Sample Responses
Sample Response: 1 point

Triangle PQR is shown, where \(\overline{ST} \parallel \overline{RQ} \).

Marta wants to prove that \(\frac{SR}{PS} = \frac{TQ}{PT} \).

Place a statement or reason in each blank box to complete Marta’s proof.

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\overline{ST} \parallel \overline{RQ})</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. (\angle PST \cong \angle R) and (\angle PTS \cong \angle Q)</td>
<td>2. If two parallel lines are cut by a transversal, then corresponding angles are congruent.</td>
</tr>
<tr>
<td>3. (\triangle PQR \sim \triangle PTS)</td>
<td>3. AA Similarity</td>
</tr>
<tr>
<td>4. (\frac{PR}{PS} = \frac{PQ}{PT})</td>
<td>4. Corresponding sides of similar triangles are proportional.</td>
</tr>
<tr>
<td>5. (PR = PS + SR, PQ = PT + TQ)</td>
<td>5. Segment addition postulate</td>
</tr>
<tr>
<td>6. (\frac{PS + SR}{PS} = \frac{PT + TQ}{PT})</td>
<td>6. Substitution</td>
</tr>
<tr>
<td>7. (\frac{PS}{PS} + \frac{SR}{PS} = \frac{PT}{PT} + \frac{TQ}{PT})</td>
<td>7. Commutative property of addition</td>
</tr>
<tr>
<td>8. (\frac{SR}{PS} = \frac{TQ}{PT})</td>
<td>8. Subtraction property of equality</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PS</th>
<th>PT</th>
<th>(\angle P \cong \angle P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR</td>
<td>ST</td>
<td>ASA Similarity</td>
</tr>
</tbody>
</table>

Reflexive Property | Segment Addition Postulate

| Corresponding sides of similar triangles are congruent. | If two parallel lines are cut by a transversal, then alternate interior angles are congruent. | If two parallel lines are cut by a transversal, then alternate exterior angles are congruent. |
Notes on Scoring

This response earns full credit (1 point) because it shows a correct proof of a theorem about a triangle where a line parallel to one side divides the other two proportionally.

In this situation, the existence of two pairs of congruent angles supports the statement about similarity of triangles PQR and PTS. Since a pair of parallel lines cut by two intersecting transversals form two triangles and two pairs of corresponding congruent angles, the triangles are similar by the Angle-Angle postulate. Having justified a similarity of the triangles, the next step is to select a statement showing a proportionality of sides, \(\frac{PR}{PS} = \frac{PQ}{PT} \), along with correct reasoning (corresponding sides of similar figures are proportional).
Triangle PQR is shown, where \(\overline{ST} \parallel \overline{RQ} \).

Marta wants to prove that \(\frac{SR}{PS} = \frac{TQ}{PT} \).

Place a statement or reason in each blank box to complete Marta’s proof.

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\overline{ST} \parallel \overline{RQ})</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. (\angle PST \cong \angle R) and (\angle PTS \cong \angle Q)</td>
<td>2. If two parallel lines are cut by a transversal, then corresponding angles are congruent.</td>
</tr>
<tr>
<td>3. (\triangle PQR \sim \triangle PTS)</td>
<td>3. AA Similarity</td>
</tr>
<tr>
<td>4.</td>
<td>4.</td>
</tr>
<tr>
<td>5. (PR = PS + SR, PQ = PT + TQ)</td>
<td>5. Segment addition postulate</td>
</tr>
<tr>
<td>6. (\frac{PS + SR}{PS} = \frac{PT + TQ}{PT})</td>
<td>6. Substitution</td>
</tr>
<tr>
<td>7. (\frac{PS}{PS} + \frac{SR}{PS} = \frac{PT}{PT} + \frac{TQ}{PT})</td>
<td>7. Commutative property of addition</td>
</tr>
<tr>
<td>8. (\frac{SR}{PS} = \frac{TQ}{PT})</td>
<td>8. Subtraction property of equality</td>
</tr>
</tbody>
</table>

\(PR = \frac{PS}{PT} \) \(\frac{PS}{SR} = \frac{PT}{ST} \) \(\angle P \equiv \angle P \)

Corresponding sides of similar triangles are proportional.

ASA Similarity

SSS Similarity

Reflexive property

Segment addition postulate

If two parallel lines are cut by a transversal, then alternate interior angles are congruent.

If two parallel lines are cut by a transversal, then alternate exterior angles are congruent.
Notes on Scoring

This response earns no credit (0 points) because it shows an incomplete proof (step 4 is missing) of a theorem about a triangle where a line parallel to one side divides the other two proportionally.
A map of Jane's town with her home and workplace is shown.

Jane wants to determine the shortest route from her home to her workplace. She walks only on the sidewalks indicated by dotted lines on the map.

What is the distance of the shortest route, to the nearest whole block?

blocks

Points Possible: 1

Content Cluster: Define trigonometric ratios, and solve problems involving right triangles.

Content Standard: Solve problems involving right triangles.
(G.SRT.8)★

(★) indicates that modeling should be incorporated into the standard.
Scoring Guidelines

Exemplar Response

- **15**

Other Correct Responses

- Any value equivalent to 15 is accepted.
- Any value from 15.3 to 15.3138 is accepted.
- **16**

For this item, a full-credit response includes:

- A correct distance (1 point).
Geometry Practice Test

Question 22

Sample Responses
Sample Response: 1 point

A map of Jane’s town with her home and workplace is shown.

Jane wants to determine the shortest route from her home to her workplace. She walks only on the sidewalks indicated by dotted lines on the map.

What is the distance of the shortest route, to the nearest whole block?

15 blocks
This response earns full credit (1 point) because it shows an acceptable length for the shortest route, rounded to the nearest whole block.

In this situation, determining the shortest distance from Home to Workplace involves choosing optimal walking routes and calculating their lengths. The shortest route consists of 5 portions. Using the Pythagorean Theorem, the length of the first portion, which is diagonal, is \(\sqrt{3^2 + 6^2} = \sqrt{45} \) blocks. The second and the third portions, along the sides of the square with length 1 block, are 1 block and 1 block. The fourth portion, which is another diagonal, is \(\sqrt{2^2 + 3^2} = \sqrt{13} \) blocks. The fifth portion, going vertically down, is 3 units. The total distance is \(\sqrt{45} + 1 + 1 + \sqrt{13} + 3 = 15.313 \ldots \), which rounds to 15 whole blocks.
A map of Jane’s town with her home and workplace is shown.

Jane wants to determine the shortest route from her home to her workplace. She walks only on the sidewalks indicated by dotted lines on the map.

What is the distance of the shortest route, to the nearest whole block?

16 blocks
Notes on Scoring

This response earns full credit (1 point) because it shows an acceptable length for the shortest route, rounded to the nearest whole block.

In this situation, determining the shortest distance from Home to Workplace involves choosing optimal walking routes and calculating their lengths. The shortest route consists of 5 portions. Using the Pythagorean Theorem, the length of the first portion, which is a diagonal, is $\sqrt{3^2 + 6^2} = \sqrt{45}$ blocks. The second and the third portions, along the sides of the square with length 1 block, are 1 block and 1 block. The fourth portion, which is another diagonal, is $\sqrt{2^2 + 3^2} = \sqrt{13}$ blocks. The fifth portion, going vertically down, is 3 units. The total distance is $\sqrt{45} + 1 + 1 + \sqrt{13} + 3 = 15.313 \ldots$. If each sq root is rounded up to the nearest whole number, the total distance is 16.
Sample Response: 1 point

A map of Jane’s town with her home and workplace is shown.

Jane wants to determine the shortest route from her home to her workplace. She walks only on the sidewalks indicated by dotted lines on the map.

What is the distance of the shortest route, to the nearest whole block?

15.313 blocks
Notes on Scoring

This response earns full credit (1 point) because it shows an acceptable length for the shortest route, not rounded to the nearest whole block.

In this situation, determining the shortest distance from Home to Workplace involves choosing optimal walking routes and calculating their lengths. The shortest route consists of 5 portions. Using the Pythagorean Theorem, the length of the first portion, which is a diagonal, is $\sqrt{3^2 + 6^2} = \sqrt{45}$ blocks. The second and the third portions, along the sides of the square with length 1 block, are 1 block and 1 block. The fourth portion, which is another diagonal, is $\sqrt{2^2 + 3^2} = \sqrt{13}$ blocks. The fifth portion, going vertically down, is 3 units. The total distance is $\sqrt{45} + 1 + 1 + \sqrt{13} + 3 = 15.313 \ldots$.
Sample Response: 0 points

A map of Jane’s town with her home and workplace is shown.

Jane wants to determine the shortest route from her home to her workplace. She walks only on the sidewalks indicated by dotted lines on the map.

What is the distance of the shortest route, to the nearest whole block?

17 blocks

Notes on Scoring

This response earns no credit (0 points) because it shows an incorrect length of the shortest route, rounded to the nearest whole block.
Sample Response: 0 points

A map of Jane’s town with her home and workplace is shown.

Jane wants to determine the shortest route from her home to her workplace. She walks only on the sidewalks indicated by dotted lines on the map.

What is the distance of the shortest route, to the nearest whole block?

14 blocks

Notes on Scoring

This response earns no credit (0 points) because it shows an incorrect length of the shortest route, rounded to the nearest whole block.
Geometry
Practice Test

Question 23

Question and Scoring Guidelines
Question 23

An equation is shown, where $0 < x < 90$ and $0 < y < 90$.

$$\cos(x^\circ) = \sin(y^\circ)$$

Create an expression for x in terms of y.

$x =$ [Blank]

Points Possible: 1

Content Cluster: Define trigonometric ratios, and solve problems involving right triangles.

Content Standard: Explain and use the relationship between the sine and cosine of complementary angles. (G.SRT.7)
Scoring Guidelines

Exemplar Response

• 90 – y

Other Correct Responses

• Any equivalent expression

For this item, a full-credit response includes:

• A correct expression (1 point).
Geometry Practice Test

Question 23

Sample Responses
Sample Response: 1 point

An equation is shown, where $0 < x < 90$ and $0 < y < 90$.

$\cos(x^\circ) = \sin(y^\circ)$

Create an expression for x in terms of y.

$x = 90 - y$

Notes on Scoring

This response earns full credit (1 point) because it shows a correct expression for x in terms of y.

This situation recognizes a relationship between angle x and angle y. If the sine value of one angle equals the cosine value of another angle, or $\sin x = \cos y$, where $0 < y < 90$, then angles are complementary. Angles are complementary if the sum of their measures is 90°, or $x + y = 90$. Therefore, $x = 90 - y$.
Sample Response: 1 point

An equation is shown, where $0 < x < 90$ and $0 < y < 90$.

$$\cos(x^\circ) = \sin(y^\circ)$$

Create an expression for x in terms of y.

$$x = -y + 90$$

Notes on Scoring

This response earns full credit (1 point) because it is equivalent to the expression $90 - y$.

This situation recognizes a relationship between angle x and angle y. If the sine value of one angle equals the cosine value of another angle, or $\sin x = \cos y$, where $0 < y < 90$, then the angles are complementary. Angles are complementary if the sum of their measures is 90°, or $x + y = 90$. Therefore, $x = 90 - y$.
Sample Response: 0 points

An equation is shown, where $0 < x < 90$ and $0 < y < 90$.

$\cos(x^\circ) = \sin(y^\circ)$

Create an expression for x in terms of y.

$x = \sin(90-y)$

Notes on Scoring

This response earns no credit (0 points) because it shows an incorrect expression for x in terms of y.
Sample Response: 0 points

An equation is shown, where $0 < x < 90$ and $0 < y < 90$.

$\cos(x^\circ) = \sin(y^\circ)$

Create an expression for x in terms of y.

$x = 90 + y$

Notes on Scoring

This response earns no credit (0 points) because it shows an incorrect expression for x in terms of y.
Geometry Practice Test

Question 24

Question and Scoring Guidelines
Question 24

Two events, A and B, are independent.

- \(P(A) = 0.3 \)
- \(P(A \text{ and } B) = 0.24 \)

What is \(P(B) \)?

\[
P(B) = \
\]

Points Possible: 1

Content Cluster: Understand independence and conditional probability, and use them to interpret data.

Content Standard: Understand that two events A and B are independent if and only if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent. (S.CP.2)★

(★) indicates that modeling should be incorporated into the standard.
Scoring Guidelines

Exemplar Response

- 0.8

Other Correct Responses

- Any equivalent value

For this item, a full-credit response includes:

- The correct probability (1 point).
Geometry Practice Test

Question 24

Sample Responses
Sample Response: 1 point

Two events, A and B, are independent.

- \(P(A) = 0.3 \)
- \(P(A \text{ and } B) = 0.24 \)

What is \(P(B) \)?

\[
P(B) = 0.8
\]

Notes on Scoring

This response earns full credit (1 point) because it shows the correct probability for the second of two independent events.

For two independent events A and B, the probability of them occurring together is the product of their probabilities.

If events A and B are independent, then

\[P(A \text{ and } B) = P(A) \cdot P(B) \]

Therefore, \(0.24 = 0.3 \cdot P(B) \), meaning \(P(B) = 0.8 \).
Sample Response: 1 point

Two events, A and B, are independent.

- \(P(A) = 0.3 \)
- \(P(A \text{ and } B) = 0.24 \)

What is \(P(B) \)?

\[
P(B) = \frac{8}{10}
\]

Notes on Scoring

This response earns full credit (1 point) because it shows the correct probability for the second of two independent events.

For two independent events A and B, the probability of them occurring together is the product of their probabilities. If events A and B are independent, then

\[P(A \text{ and } B) = P(A) \cdot P(B). \]

Therefore, \(0.24 = 0.3 \cdot P(B) \), meaning \(P(B) = 0.8 \) or 8/10.
Sample Response: 0 points

Two events, A and B, are independent.

- \(P(A) = 0.3 \)
- \(P(A \text{ and } B) = 0.24 \)

What is \(P(B) \)?

\[
P(B) = 0.7
\]

Notes on Scoring

This response earns no credit (0 points) because it shows an incorrect probability for the second of two independent events.
Sample Response: 0 points

Two events, A and B, are independent.

- $P(A) = 0.3$
- $P(A \text{ and } B) = 0.24$

What is $P(B)$?

$P(B) = \boxed{0.46}$

Notes on Scoring

This response earns no credit (0 points) because it shows an incorrect probability for the second of two independent events.
A total of 200 people attend a party, as shown in the table.

<table>
<thead>
<tr>
<th></th>
<th>Adults</th>
<th>Children</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td></td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>Total</td>
<td>150</td>
<td>50</td>
<td>200</td>
</tr>
</tbody>
</table>

A person is selected at random to win a prize. The probability of selecting a female is 0.6. The probability of selecting a child, given that the person is female, is 0.25. The probability of selecting a male, given that the person is a child, is 0.4.

Complete the two-way table to show the number of adults, children, males, and females who attended the party.

Points Possible: 1

Content Cluster: Understand independence and conditional probability, and use them to interpret data.

Content Standard: Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your school on their favorite subject among math, science, and English. Estimate the probability that a randomly selected student from your school will favor science given that the student is in tenth grade. Do the same for other subjects and compare the results. (S.CP.4)★

(★) indicates that modeling should be incorporated into the standard.
Scoring Guidelines

Exemplar Response

<table>
<thead>
<tr>
<th></th>
<th>Adults</th>
<th>Children</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>60</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>Female</td>
<td>90</td>
<td>30</td>
<td>120</td>
</tr>
<tr>
<td>Total</td>
<td>150</td>
<td>50</td>
<td>200</td>
</tr>
</tbody>
</table>

Other Correct Responses

- A table with equivalent values

For this item, a full-credit response includes:

- A correct table (1 point).
Geometry
Practice Test

Question 25

Sample Responses
Sample Response: 1 point

A total of 200 people attend a party, as shown in the table.

<table>
<thead>
<tr>
<th></th>
<th>Adults</th>
<th>Children</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>60</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>Female</td>
<td>90</td>
<td>30</td>
<td>120</td>
</tr>
<tr>
<td>Total</td>
<td>150</td>
<td>50</td>
<td>200</td>
</tr>
</tbody>
</table>

A person is selected at random to win a prize. The probability of selecting a female is 0.6. The probability of selecting a child, given that the person is female, is 0.25. The probability of selecting a male, given that the person is a child, is 0.4.

Complete the two-way table to show the number of adults, children, males, and females who attended the party.

Notes on Scoring

This response earns full credit (1 point) because it shows a completed table with correct values.

This situation requires a correct construction of a two-way frequency table of data. Since the probability of selecting a child, given it is a female, is 0.25, the number of female children is 120 • .25 or 30 (Row 2/Column 2). The number of female adults is 120 – 30 or 90 (Row 2/Column 1). Since the probability of selecting a male, given it is a child, is 0.4, the number of male children is 50 • 0.4 or 20 (Row 1/Column 2). The number of male adults is 80 – 20 or 60 (Row 1/Column 1).
Sample Response: 0 points

A total of 200 people attend a party, as shown in the table.

<table>
<thead>
<tr>
<th></th>
<th>Adults</th>
<th>Children</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>20</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>Female</td>
<td>30</td>
<td>90</td>
<td>120</td>
</tr>
<tr>
<td>Total</td>
<td>150</td>
<td>50</td>
<td>200</td>
</tr>
</tbody>
</table>

A person is selected at random to win a prize. The probability of selecting a female is 0.6. The probability of selecting a child, given that the person is female, is 0.25. The probability of selecting a male, given that the person is a child, is 0.4.

Complete the two-way table to show the number of adults, children, males, and females who attended the party.

Notes on Scoring

This response earns no credit (0 points) because it shows a table with the correct values in the wrong cells.
Sample Response: 0 points

A total of 200 people attend a party, as shown in the table.

<table>
<thead>
<tr>
<th></th>
<th>Adults</th>
<th>Children</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>30</td>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td>Female</td>
<td>120</td>
<td>0</td>
<td>120</td>
</tr>
<tr>
<td>Total</td>
<td>150</td>
<td>50</td>
<td>200</td>
</tr>
</tbody>
</table>

A person is selected at random to win a prize. The probability of selecting a female is 0.6. The probability of selecting a child, given that the person is female, is 0.25. The probability of selecting a male, given that the person is a child, is 0.4.

Complete the two-way table to show the number of adults, children, males, and females who attended the party.

Notes on Scoring

This response earns no credit (0 points) because it shows a table with incorrect values.
Sample Response: 0 points

A total of 200 people attend a party, as shown in the table.

<table>
<thead>
<tr>
<th></th>
<th>Adults</th>
<th>Children</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>80</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>Female</td>
<td>70</td>
<td>50</td>
<td>120</td>
</tr>
<tr>
<td>Total</td>
<td>150</td>
<td>50</td>
<td>200</td>
</tr>
</tbody>
</table>

A person is selected at random to win a prize. The probability of selecting a female is 0.6. The probability of selecting a child, given that the person is female, is 0.25. The probability of selecting a male, given that the person is a child, is 0.4.

Complete the two-way table to show the number of adults, children, males, and females who attended the party.

Notes on Scoring

This response earns no credit (0 points) because it shows a table with incorrect values.
Geometry Practice Test

Question 26

Question and Scoring Guidelines
Question 26

Sam is picking fruit from a basket that contains many different kinds of fruit.

Which set of events is independent?

A. Event 1: He picks a kiwi and eats it.
 Event 2: He picks an apple and eats it.

B. Event 1: He picks an apple and eats it.
 Event 2: He picks a kiwi and eats it.

C. Event 1: He picks a kiwi and eats it.
 Event 2: He picks a kiwi and puts it back.

D. Event 1: He picks a kiwi and puts it back.
 Event 2: He picks an apple and puts it back.

Points Possible: 1

Content Cluster: Understand independence and conditional probability, and use them to interpret data.

Content Standard: Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer. (S.CP.5)★

(★) indicates that modeling should be incorporated into the standard.
Scoring Guidelines

Rationale for Option A: This is incorrect. The student may have thought that because the fruit were different, the two events must be independent, but missed that picking and eating a fruit without replacing it with the same fruit will affect the likelihood of picking a different fruit from the basket.

Rationale for Option B: This is incorrect. The student may have thought that, knowing that an apple was picked and eaten, P(E|E)=1 yields certainty for an apple to be picked and eaten.

Rationale for Option C: This is incorrect. The student may have switched the order of events and thought that because a kiwi was picked and put back, it did not affect the likelihood of picking another kiwi, which makes the two events independent.

Rationale for Option D: Key – The student correctly identified that picking a fruit from the basket and putting it back does not affect the likelihood of picking a different fruit and putting it back, which makes the two events independent.

Sample Response: 1 point

Sam is picking fruit from a basket that contains many different kinds of fruit.

Which set of events is independent?

A. Event 1: He picks a kiwi and eats it.
 Event 2: He picks an apple and eats it.

B. Event 1: He picks an apple and eats it.
 Event 2: He picks a kiwi and puts it back.

C. Event 1: He picks a kiwi and eats it.
 Event 2: He picks a kiwi and eats it.

D. Event 1: He picks an apple and eats it.
 Event 2: He picks an apple and puts it back.

E. Event 1: He picks a kiwi and puts it back.
 Event 2: He picks an apple and eats it.

F. Event 1: He picks a kiwi and puts it back.
 Event 2: He picks an apple and puts it back.
Geometry
Practice Test

Question 27

Question and Scoring Guidelines
Question 27

The probability of flipping a fair coin and heads landing face up is 0.5. The probability of rolling a fair number cube, with sides numbered 1 through 6, and an odd number landing face up is 0.5.

What is the probability of flipping heads or rolling an odd number?

Points Possible: 1

Content Cluster: Use the rules of probability to compute probabilities of compound events in a uniform probability model.

Content Standard: Apply the Addition Rule, \(P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B) \), and interpret the answer in terms of the model. (S.CP.7)★

(★) indicates that modeling should be incorporated into the standard.

Scoring Guidelines

Exemplar Response

• 0.75

Other Correct Responses

• Any equivalent value

For this item, a full-credit response includes:

• A correct value (1 point).
Geometry Practice Test

Question 27

Sample Responses
Sample Response: 1 point

The probability of flipping a fair coin and heads landing face up is 0.5. The probability of rolling a fair number cube, with sides numbered 1 through 6, and an odd number landing face up is 0.5.

What is the probability of flipping heads or rolling an odd number?

.75

Notes on Scoring

This response earns full credit (1 point) because it shows the correct probability.

There are several strategies that can be used to solve problems with compound events. In this situation, the two compound events (i.e., events happening at the same time) are flipping heads (A) and rolling an odd number (B).

The Addition Rule, \(P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B) \), can be used to calculate the probability of flipping heads or rolling an odd number. If the probability of flipping heads is 0.5 and the probability of rolling an odd number is 0.5, then the probability of flipping heads and rolling an odd number is \(0.5 \times 0.5 = 0.25 \), since these two events are independent. By substituting these values in the formula, the probability of flipping heads or rolling an odd number is \(P(A \text{ or } B) = 0.5 + 0.5 - 0.25 = 0.75 \).
Sample Response: 1 point

The probability of flipping a fair coin and heads landing face up is 0.5. The probability of rolling a fair number cube, with sides numbered 1 through 6, and an odd number landing face up is 0.5.

What is the probability of flipping heads or rolling an odd number?

\[
\frac{3}{4}
\]

Notes on Scoring

This response earns full credit (1 point) because it shows the equivalent value of a correct probability.

There are several strategies that can be used to solve problems with compound events. In this situation, the two compound events (i.e., events happening at the same time) are flipping heads (A) and rolling an odd number (B).

The Addition Rule, \(P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B) \), can be used to calculate the probability of flipping heads or rolling an odd number. If the probability of flipping heads is 0.5 and the probability of rolling an odd number is 0.5, then the probability of flipping heads and rolling an odd number is 0.5 \times 0.5 = 0.25, since these two events are independent. By substituting these values in the formula, the probability of flipping heads or rolling an odd number is

\[
P(A \text{ or } B) = 0.5 + 0.5 - 0.25 = 0.75 \text{ or } \frac{3}{4}
\]
Sample Response: 0 points

The probability of flipping a fair coin and heads landing face up is 0.5. The probability of rolling a fair number cube, with sides numbered 1 through 6, and an odd number landing face up is 0.5.

What is the probability of flipping heads or rolling an odd number?

\[
\frac{1}{6}
\]

Notes on Scoring

This response earns no credit (0 points) because it shows an incorrect probability.
Sample Response: 0 points

The probability of flipping a fair coin and heads landing face up is 0.5. The probability of rolling a fair number cube, with sides numbered 1 through 6, and an odd number landing face up is 0.5.

What is the probability of flipping heads or rolling an odd number?

0.5

Notes on Scoring

This response earns no credit (0 points) because it shows an incorrect probability.
Geometry Practice Test

Question 28

Question and Scoring Guidelines
Let the statement \((x, y) \rightarrow (a, b)\) describe the translation.

Create equations for \(a\) in terms of \(x\) and for \(b\) in terms of \(y\) that could be used to describe the translation.

\[
a = \underline{\hspace{2cm}}
\]

\[
b = \underline{\hspace{2cm}}
\]

Points Possible: 1

Content Cluster: Experiment with transformations in the plane.

Content Standard: Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not, e.g., translation versus horizontal stretch. (G.CO.2)
Scoring Guidelines

Exemplar Response

- \(a = x - 4 \)
- \(b = y + 3 \)

Other Correct Responses

- Any equivalent equation

For this item, a full-credit response includes:

- A correct translation (1 point).
Geometry
Practice Test

Question 28

Sample Responses
A translation is applied to $\triangle PQR$ to create $\triangle P'Q'R'$.

Let the statement $(x, y) \rightarrow (a, b)$ describe the translation.

Create equations for a in terms of x and for b in terms of y that could be used to describe the translation.

\[a = x - 4 \]
\[b = y + 3 \]
Notes on Scoring

This response earns full credit (1 point) because it shows a correct equation for a in terms of x, and for b in terms of y.

Under the translation of \(\triangle PQR \) to \(\triangle P'Q'R' \), every point \((x, y)\) of \(\triangle PQR \) corresponds to the point \((a, b)\) of \(\triangle P'Q'R' \) or \((x, y) \rightarrow (a, b)\). Using one point as reference, it can be seen that each point of \(\triangle P'Q'R' \) is 4 units to the left and 3 units up from its corresponding point in \(\triangle PQR \). Using coordinates, this translation can be described by adding -4 to the x-coordinate and adding positive 3 to the y-coordinate of the point \((x, y)\) or \((x, y) \rightarrow (x - 4, y + 3)\). Therefore, \(a = x - 4 \) and \(b = y + 3 \).
Sample Response: 1 point

A translation is applied to \(\triangle PQR \) to create \(\triangle P'Q'R' \).

Let the statement \((x, y) \rightarrow (a, b)\) describe the translation.

Create equations for \(a\) in terms of \(x\) and for \(b\) in terms of \(y\) that could be used to describe the translation.

\[
a = -4 + x
\]

\[
b = 3 + y
\]
Notes on Scoring

This response earns full credit (1 point) because it shows an equivalent correct equation for a in terms of x, and for b in terms of y.

Under the translation of $\triangle PQR$ to $\triangle P'Q'R'$, every point (x, y) of $\triangle PQR$ corresponds to the point (a, b) of $\triangle P'Q'R'$ or $(x, y) \rightarrow (a, b)$. Using one point as reference, it can be seen that each point of $\triangle P'Q'R'$ is 4 units to the left and 3 units up from its corresponding point in $\triangle PQR$. Using coordinates, this translation can be described by adding -4 to the x-coordinate and adding positive 3 to the y-coordinate of the point (x, y) or $(x, y) \rightarrow (x - 4, y + 3)$. Therefore, $a = x - 4$ and $b = y + 3$.
Sample Response: 0 points

A translation is applied to \(\triangle PQR \) to create \(\triangle P'Q'R' \).

Let the statement \((x, y) \rightarrow (a, b)\) describe the translation.

Create equations for \(a \) in terms of \(x \) and for \(b \) in terms of \(y \) that could be used to describe the translation.

\[
a = x + 4 \\
b = y - 3
\]

Notes on Scoring

This response earns no credit (0 points) because it shows an incorrect equation for \(a \) in terms of \(x \) and an incorrect equation for \(b \) in terms of \(y \).
Sample Response: 0 points

A translation is applied to ΔPQR to create ΔP'Q'R'.

Let the statement \((x, y) \rightarrow (a, b)\) describe the translation.

Create equations for \(a\) in terms of \(x\) and for \(b\) in terms of \(y\) that could be used to describe the translation.

\[
a = -4x
\]

\[
b = 3y
\]

Notes on Scoring

This response earns no credit (0 points) because it shows an incorrect equation for \(a\) in terms of \(x\) and an incorrect equation for \(b\) in terms of \(y\).
Geometry Practice Test

Question 29

Question and Scoring Guidelines
Question 29

A triangle and incomplete proof are shown.

Given: $\angle B \cong \angle C$
\overline{AD} is an altitude of $\triangle ABC$.
Prove: $\triangle ABC$ is isosceles.

Place the statements and reasons in the blanks to complete the flow chart proof.

1. \overline{AD} is an altitude of $\triangle ABC$. (Given)
2. $\angle B \cong \angle C$. (Given)
3. $m\angle ADC = 90^\circ$ and $m\angle ADB = 90^\circ$. (Definition of an altitude)
4. $\angle ADC \cong \angle ADB$. (Definition of congruency)
5. $\triangle ADC \cong \triangle ADB$. (SAS or AAS)
6. $\overline{AC} \cong \overline{AB}$. (Definition of an isosceles triangle)

Points Possible: 1

Content Cluster: Prove geometric theorems both formally and informally using a variety of methods.

Content Standard: Prove and apply theorems about triangles. Theorems include but are not restricted to the following: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point. (G.CO.10)
Scoring Guidelines

Exemplar Response

Other Correct Responses

- In the first logical step, the statement and reason can be in any order and in any box as long as they are both there.

For this item, a full-credit response includes:

- The correct flow chart (1 point).
Geometry Practice Test

Question 29

Sample Responses
Sample Response: 1 point

A triangle and incomplete proof are shown.

Given: \(\angle B \equiv \angle C \)
\(AD \) is an altitude of \(\triangle ABC \).
Prove: \(\triangle ABC \) is isosceles.

Place the statements and reasons in the blanks to complete the flow chart proof.

- \(\overline{AD} \) is an altitude of \(\triangle ABC \).
 Given

- \(\angle B \equiv \angle C \)
 Given

- \(\overline{AD} \equiv \overline{AD} \)
 Reflexive property

- \(m \angle ADC = 90^{\circ} \)
 \(m \angle ADB = 90^{\circ} \)
 Definition of an altitude

- \(\triangle ADC \equiv \triangle ADB \)
 Definition of congruency

- \(\triangle ADC \equiv \triangle ADB \)
 AAS

- \(\overline{AC} \equiv \overline{AB} \)
 CPCTC

- \(\triangle ABC \) is isosceles
 Definition of an isosceles triangle

Keywords: SAS, AAS, SSS, CPCTC, HL, Reflexive property, Transitive property, \(\overline{AD} \equiv \overline{AD} \), \(\overline{AD} \equiv \overline{AB} \)
Notes on Scoring

This response receives full credit (1 point) because it shows correct statements and reasons needed to complete the flow chart.

In a flow chart, a correctly chosen piece of missing information should show where each statement is logically connected with the previous statement, which then allows for the next correct statement. The intent of this flow chart is to prove that if the triangle has congruent base angles, then the triangle is isosceles.

There are already two statements in the flow chart that show pairs of congruent angles: \(\angle B \cong \angle C \) (Given) and \(\angle ADC \cong \angle ADB \) (Definition of congruency). This enables the conclusion that \(\triangle ADC \) will be congruent to \(\triangle ABC \) as long as a pair of congruent sides is present, because of the Angle-Angle-Side (AAS) criterion. Looking at the diagram, \(\overline{AD} \cong \overline{AD} \) by the Reflexive Property, so these statements can go in the left slots. This then allows AAS to be used in the middle slot. Following from that, it can be concluded that \(\overline{AC} \cong \overline{AB} \) because of CPCTC (corresponding parts of congruent triangles are congruent). According to the definition, a triangle is an isosceles triangle if a pair of sides is congruent; therefore, \(\triangle ABC \) is isosceles since \(\overline{AC} \) and \(\overline{AB} \) are congruent.
Sample Response: 1 point

A triangle and incomplete proof are shown.

Given: \(\angle B = \angle C \)

\(\overline{AD} \) is an altitude of \(\triangle ABC \).

Prove: \(\triangle ABC \) is isosceles.

Place the statements and reasons in the blanks to complete the flow chart proof.

- **Given:** \(\overline{AD} \) is an altitude of \(\triangle ABC \).
- **Given:** \(\angle B = \angle C \)

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\overline{AD}) is an altitude of (\triangle ABC)</td>
<td>Given</td>
</tr>
<tr>
<td>(\angle B = \angle C)</td>
<td>Given</td>
</tr>
<tr>
<td>(\overline{AD} = \overline{AD})</td>
<td>Reflexive property</td>
</tr>
<tr>
<td>(\angle ADC = \angle ADB = 90^\circ)</td>
<td>Definition of an altitude</td>
</tr>
<tr>
<td>(\triangle ADC \cong \triangle ADB)</td>
<td>Definition of congruency</td>
</tr>
<tr>
<td>(\overline{AC} = \overline{AB})</td>
<td>AAS</td>
</tr>
<tr>
<td>(\triangle ABC) is isosceles</td>
<td>Definition of an isosceles triangle</td>
</tr>
</tbody>
</table>

Keywords: SAS, AAS, SSS, CPCTC, HL, Reflexive property, Transitive property, \(\overline{AD} \cong \overline{AD} \), \(\overline{AD} \cong \overline{AD} \)
Notes on Scoring

This response receives full credit (1 point) because it shows correct statements and reasons needed to complete the flow chart.

In a flow chart, a correctly chosen piece of missing information should show where each statement is logically connected with the previous statement, which then allows for the next correct statement. The intent of this flow chart is to prove that if the triangle has congruent base angles, then the triangle is isosceles.

There are already two statements in the flow chart that show pairs of congruent angles: \(\angle B \cong \angle C \) (Given) and \(\angle ADC \cong \angle ADB \) (Definition of congruency). This enables the conclusion that \(\triangle ADC \) will be congruent to \(\triangle ABC \) as long as a pair of congruent sides is present, because of the Angle-Angle-Side (AAS) criterion. Looking at the diagram, \(AB \cong BA \) by the Reflexive Property, so these statements can go in the left slots. This then allows AAS to be used in the middle slot. Following from that, it can be concluded that \(AC \cong AB \) because of CPCTC (corresponding parts of congruent triangles are congruent). According to the definition, a triangle is an isosceles triangle if a pair of sides is congruent; therefore, \(\triangle ABC \) is isosceles since \(AC \) and \(AB \) are congruent.
Sample Response: 0 points

A triangle and incomplete proof are shown.

Given: \(\angle B = \angle C \)

\(\overline{AD} \) is an altitude of \(\triangle ABC \).

Prove: \(\triangle ABC \) is isosceles.

Place the statements and reasons in the blanks to complete the flow chart proof.

\(\overline{AD} \) is an altitude of \(\triangle ABC \).

Given

\(\angle B = \angle C \)

Given

\(\overline{AD} \cong \overline{AD} \)

Reflexive property

\(\triangle ADC \cong \triangle ADB \)

Definition of congruency

\(m \angle ADC = 90^\circ \)

\(m \angle ADB = 90^\circ \)

Definition of an altitude

\(\angle ADC \cong \angle ADB \)

\(\triangle ABC \) is isosceles

Definition of an isosceles triangle

Notes on Scoring

This response receives no credit (0 points) because it shows an incorrect reason in the middle slot (SAS) for the triangle congruence statement. Triangles that have only one pair of congruent sides, \(\overline{AD} = \overline{AD} \), and two pairs of congruent angles cannot be associated with the SAS criteria.
Sample Response: 0 points

A triangle and incomplete proof are shown.

Given: $\angle B = \angle C$

\overline{AD} is an altitude of $\triangle ABC$.

Prove: $\triangle ABC$ is isosceles.

Place the statements and reasons in the blanks to complete the flow chart proof.

- \overline{AD} is an altitude of $\triangle ABC$.
- $\angle B \cong \angle C$

Given

$\triangle ADB$ is isosceles by Reflexive property

$m \angle ADC = 90^\circ$

$m \angle ADB = 90^\circ$

Definition of an altitude

$\angle ADC \cong \angle ADB$

Definition of congruency

$\triangle ADC \cong \triangle ADB$

AAS

$\overline{AC} \cong \overline{AB}$

Transitive property

$\triangle ABC$ is isosceles

Definition of an isosceles triangle

Notes on Scoring

This response receives no credit (0 points) because it shows an incorrect reason in the slot on the right.
Sample Response: 0 points

A triangle and incomplete proof are shown.

Given: ∠B = ∠C

AD is an altitude of ∆ABC.

Prove: ∆ABC is isosceles.

Place the statements and reasons in the blanks to complete the flow chart proof.

- AD is an altitude of ∆ABC.
- ∠B = ∠C

Given

Transitive property

Definition of an attitude

Definition of congruency

Transitive property

Definition of an isosceles triangle

Notes on Scoring

This response receives no credit (0 points) because it shows an incorrect reason in the lower-left slot.
Question 30

Circles M and N are shown.

Complete the statement to explain how it can be shown that the two circles are similar.

Circle M can be mapped onto circle N by a reflection across \(x \)-axis and a dilation about the center of circle M by a scale factor of \(\frac{3}{2} \).

Exemplar Response

- Circle M can be mapped onto Circle N by a reflection across the \(x \)-axis and a dilation about its center by a scale factor of 1.5.

Other Correct Responses

- N/A

For this item, a full-credit response includes:

- A correctly completed sentence (1 point).

Points Possible: 1

Content Cluster: Understand and apply theorems about circles.

Content Standard: Prove that all circles are similar using transformational arguments. (G.C.1)

Scoring Guidelines
Geometry Practice Test

Question 30

Sample Responses
Notes on Scoring

This response receives full credit (1 point) because it correctly completes the statement to explain that the two circles are similar.

Two circles are similar if one or more transformations (reflections, translations, rotations, dilation) can be found that map circle M onto circle N. A circle, by definition, is the set of points equidistant from a given point. Consequently, a circle is defined by the center and the length of the radius. Since the centers of the circles are equidistant from the x-axis, then after the reflection over the x-axis, the centers will coincide. Therefore, the correct option in the first drop-down menu is a reflection across the x-axis. A dilation about the center of a circle M is needed to increase the size of circle M. The scale factor of the dilation is equal to the ratio of the radius of the image Circle N to the original circle M, or $\frac{3}{2}$ or 1.5.
Sample Response: 0 points

Circles M and N are shown.

Complete the statement to explain how it can be shown that the two circles are similar.
Circle M can be mapped onto circle N by a reflection across the y-axis and a dilation about the center of circle M by a scale factor of 1.5.

Notes on Scoring
This response receives no credit (0 points) because it shows an incorrect selection of the reflection axis.
Sample Response: 0 points

Circles M and N are shown.

Complete the statement to explain how it can be shown that the two circles are similar.

Circle M can be mapped onto circle N by a reflection across the x-axis \(\times \) and a dilation about the center of circle M by a scale factor of \(\frac{2}{3} \) or 0.67.

Notes on Scoring

This response receives no credit (0 points) because it shows an incorrect selection of the scale factor. The student may have calculated the scale factor of the dilation as the ratio of the radius of the image, circle M, to the radius of the image circle N, or \(\frac{2}{3} \) or 0.67.